Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Daniel Steinberg and Richard Bayer.
Connection Strength

0.897
  1. CT in Transcatheter-delivered Treatment of Valvular Heart Disease. Radiology. 2022 07; 304(1):4-17.
    View in: PubMed
    Score: 0.214
  2. Computed tomography imaging of coronary artery plaque: characterization and prognosis. Radiol Clin North Am. 2015 Mar; 53(2):307-15.
    View in: PubMed
    Score: 0.129
  3. Coronary CT Fractional Flow Reserve before Transcatheter Aortic Valve Replacement: Clinical Outcomes. Radiology. 2022 01; 302(1):50-58.
    View in: PubMed
    Score: 0.051
  4. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry. JACC Cardiovasc Imaging. 2020 03; 13(3):760-770.
    View in: PubMed
    Score: 0.044
  5. Coronary CT Angiography-derived Fractional Flow Reserve: Machine Learning Algorithm versus Computational Fluid Dynamics Modeling. Radiology. 2018 Jul; 288(1):64-72.
    View in: PubMed
    Score: 0.040
  6. Coronary CT Angiography-derived Fractional Flow Reserve. Radiology. 2017 10; 285(1):17-33.
    View in: PubMed
    Score: 0.039
  7. Coronary Computed Tomographic Angiography-Derived Fractional Flow Reserve for Therapeutic Decision Making. Am J Cardiol. 2017 Dec 15; 120(12):2121-2127.
    View in: PubMed
    Score: 0.039
  8. Coronary Computed Tomographic Angiography-Derived Fractional Flow Reserve Based on Machine Learning for Risk Stratification of Non-Culprit Coronary Narrowings in Patients with Acute Coronary Syndrome. Am J Cardiol. 2017 Oct 15; 120(8):1260-1266.
    View in: PubMed
    Score: 0.038
  9. Correlation and predictive value of aortic root calcification markers with coronary artery calcification and obstructive coronary artery disease. Radiol Med. 2017 Feb; 122(2):113-120.
    View in: PubMed
    Score: 0.036
  10. Diagnostic accuracy of coronary CT angiography using 3rd-generation dual-source CT and automated tube voltage selection: Clinical application in a non-obese and obese patient population. Eur Radiol. 2017 Jun; 27(6):2298-2308.
    View in: PubMed
    Score: 0.036
  11. Coronary CT angiography-derived quantitative markers for predicting in-stent restenosis. J Cardiovasc Comput Tomogr. 2016 Sep-Oct; 10(5):377-83.
    View in: PubMed
    Score: 0.035
  12. Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis. J Cardiovasc Comput Tomogr. 2016 May-Jun; 10(3):199-206.
    View in: PubMed
    Score: 0.035
  13. Transcatheter Aortic Valve Replacement: Imaging Techniques for Aortic Root Sizing. J Thorac Imaging. 2015 Nov; 30(6):349-58.
    View in: PubMed
    Score: 0.034
  14. Diagnostic value of quantitative stenosis predictors with coronary CT angiography compared to invasive fractional flow reserve. Eur J Radiol. 2015 Aug; 84(8):1509-1515.
    View in: PubMed
    Score: 0.033
  15. Coronary CT angiography-derived fractional flow reserve correlated with invasive fractional flow reserve measurements--initial experience with a novel physician-driven algorithm. Eur Radiol. 2015 Apr; 25(4):1201-7.
    View in: PubMed
    Score: 0.032
  16. Dual-source CT imaging to plan transcatheter aortic valve replacement: accuracy for diagnosis of obstructive coronary artery disease. Radiology. 2015 Apr; 275(1):80-8.
    View in: PubMed
    Score: 0.032
  17. Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol. 2014 Nov 01; 114(9):1303-8.
    View in: PubMed
    Score: 0.031
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.