Connection

Rosalie Crouch to Animals

This is a "connection" page, showing publications Rosalie Crouch has written about Animals.
Connection Strength

1.385
  1. A2E and Lipofuscin. Prog Mol Biol Transl Sci. 2015; 134:449-63.
    View in: PubMed
    Score: 0.038
  2. Sustained delivery of retinoids to prevent photoreceptor death. Methods Mol Biol. 2015; 1271:363-8.
    View in: PubMed
    Score: 0.036
  3. Ligand control of g protein-coupled receptor activity: new insights. Chem Biol. 2014 Mar 20; 21(3):309-10.
    View in: PubMed
    Score: 0.034
  4. The utilization of fluorescence to identify the components of lipofuscin by imaging mass spectrometry. Proteomics. 2014 Apr; 14(7-8):936-44.
    View in: PubMed
    Score: 0.034
  5. Similar molecules spatially correlate with lipofuscin and N-retinylidene-N-retinylethanolamine in the mouse but not in the human retinal pigment epithelium. Arch Biochem Biophys. 2013 Nov 15; 539(2):196-202.
    View in: PubMed
    Score: 0.033
  6. New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res. 2013 Jan; 32:48-63.
    View in: PubMed
    Score: 0.031
  7. Molecule-specific imaging and quantitation of A2E in the RPE. Adv Exp Med Biol. 2012; 723:75-81.
    View in: PubMed
    Score: 0.030
  8. Regeneration of photopigment is enhanced in mouse cone photoreceptors expressing RPE65 protein. J Neurosci. 2011 Jul 13; 31(28):10403-11.
    View in: PubMed
    Score: 0.029
  9. Interphotoreceptor retinoid-binding protein as the physiologically relevant carrier of 11-cis-retinol in the cone visual cycle. J Neurosci. 2011 Mar 23; 31(12):4714-9.
    View in: PubMed
    Score: 0.028
  10. Probing human red cone opsin activity with retinal analogues. J Nat Prod. 2011 Mar 25; 74(3):391-4.
    View in: PubMed
    Score: 0.028
  11. Retinol dehydrogenases (RDHs) in the visual cycle. Exp Eye Res. 2010 Dec; 91(6):788-92.
    View in: PubMed
    Score: 0.027
  12. Effective and sustained delivery of hydrophobic retinoids to photoreceptors. Invest Ophthalmol Vis Sci. 2010 Nov; 51(11):5958-64.
    View in: PubMed
    Score: 0.027
  13. Deletion of GRK1 causes retina degeneration through a transducin-independent mechanism. J Neurosci. 2010 Feb 17; 30(7):2496-503.
    View in: PubMed
    Score: 0.026
  14. The interphotoreceptor retinoid binding (IRBP) is essential for normal retinoid processing in cone photoreceptors. Adv Exp Med Biol. 2010; 664:141-9.
    View in: PubMed
    Score: 0.026
  15. In vitro assays of rod and cone opsin activity: retinoid analogs as agonists and inverse agonists. Methods Mol Biol. 2010; 652:85-94.
    View in: PubMed
    Score: 0.026
  16. Normal cone function requires the interphotoreceptor retinoid binding protein. J Neurosci. 2009 Apr 08; 29(14):4616-21.
    View in: PubMed
    Score: 0.024
  17. 11-cis- and all-trans-retinols can activate rod opsin: rational design of the visual cycle. Biochemistry. 2008 Jul 15; 47(28):7567-71.
    View in: PubMed
    Score: 0.023
  18. Quantitation of the effect of hydroxylamine on rhodopsin palmitylation. Photochem Photobiol. 2008 Jul-Aug; 84(4):949-55.
    View in: PubMed
    Score: 0.023
  19. Rpe65-/- and Lrat-/- mice: comparable models of leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2008 Jun; 49(6):2384-9.
    View in: PubMed
    Score: 0.023
  20. 9-cis Retinal increased in retina of RPE65 knockout mice with decrease in coat pigmentation. Photochem Photobiol. 2006 Nov-Dec; 82(6):1461-7.
    View in: PubMed
    Score: 0.021
  21. Palmitylation of cone opsins. Vision Res. 2006 Dec; 46(27):4493-501.
    View in: PubMed
    Score: 0.021
  22. Rod and cone pigment regeneration in RPE65-/- mice. Adv Exp Med Biol. 2006; 572:101-7.
    View in: PubMed
    Score: 0.020
  23. Cone opsin mislocalization in Rpe65-/- mice: a defect that can be corrected by 11-cis retinal. Invest Ophthalmol Vis Sci. 2005 Oct; 46(10):3876-82.
    View in: PubMed
    Score: 0.019
  24. Rhodopsin phosphorylation in rats exposed to intense light. Photochem Photobiol. 2005 May-Jun; 81(3):541-7.
    View in: PubMed
    Score: 0.019
  25. Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice. Proc Natl Acad Sci U S A. 2003 Nov 11; 100(23):13662-7.
    View in: PubMed
    Score: 0.017
  26. Correlation of regenerable opsin with rod ERG signal in Rpe65-/- mice during development and aging. Invest Ophthalmol Vis Sci. 2003 Jan; 44(1):310-5.
    View in: PubMed
    Score: 0.016
  27. Does constitutive phosphorylation protect against photoreceptor degeneration in Rpe65-/- mice? Adv Exp Med Biol. 2003; 533:221-7.
    View in: PubMed
    Score: 0.016
  28. A visual pigment expressed in both rod and cone photoreceptors. Neuron. 2001 Nov 08; 32(3):451-61.
    View in: PubMed
    Score: 0.015
  29. Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors. J Gen Physiol. 2000 Aug; 116(2):283-97.
    View in: PubMed
    Score: 0.013
  30. Mass spectrometric analysis of rhodopsin from light damaged rats. Mol Vis. 2000 Jun 27; 6:109-15.
    View in: PubMed
    Score: 0.013
  31. Synthetic retinals: convenient probes of rhodopsin and visual transduction process. Methods Enzymol. 2000; 315:219-37.
    View in: PubMed
    Score: 0.013
  32. Identification of RPE65 in transformed kidney cells. FEBS Lett. 1999 Jun 11; 452(3):199-204.
    View in: PubMed
    Score: 0.012
  33. Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors. J Gen Physiol. 1999 Mar; 113(3):491-503.
    View in: PubMed
    Score: 0.012
  34. Cloning and localization of RPE65 mRNA in salamander cone photoreceptor cells1. Biochim Biophys Acta. 1998 Nov 26; 1443(1-2):255-61.
    View in: PubMed
    Score: 0.012
  35. Bis(monoacylglycero)phosphate lipids in the retinal pigment epithelium implicate lysosomal/endosomal dysfunction in a model of Stargardt disease and human retinas. Sci Rep. 2017 12 11; 7(1):17352.
    View in: PubMed
    Score: 0.011
  36. Complete map and identification of the phosphorylation site of bovine lens major intrinsic protein. Invest Ophthalmol Vis Sci. 1997 Nov; 38(12):2508-15.
    View in: PubMed
    Score: 0.011
  37. RPE65 and the Accumulation of Retinyl Esters in Mouse Retinal Pigment Epithelium. Photochem Photobiol. 2017 05; 93(3):844-848.
    View in: PubMed
    Score: 0.011
  38. Imaging MS of Rodent Ocular Tissues and the Optic Nerve. Methods Mol Biol. 2017; 1618:15-27.
    View in: PubMed
    Score: 0.010
  39. Retinoids and the visual process. Photochem Photobiol. 1996 Oct; 64(4):613-21.
    View in: PubMed
    Score: 0.010
  40. Molecular cloning of a rhodopsin gene from salamander rods. Invest Ophthalmol Vis Sci. 1996 Aug; 37(9):1907-13.
    View in: PubMed
    Score: 0.010
  41. Physiological activity of retinoids in natural and artificial visual pigments. Photochem Photobiol. 1996 May; 63(5):595-600.
    View in: PubMed
    Score: 0.010
  42. A2E and lipofuscin distributions in macaque retinal pigment epithelium are similar to human. Photochem Photobiol Sci. 2015 Oct; 14(10):1888-95.
    View in: PubMed
    Score: 0.010
  43. The 11-cis Retinal Origins of Lipofuscin in the Retina. Prog Mol Biol Transl Sci. 2015; 134:e1-12.
    View in: PubMed
    Score: 0.009
  44. Coexpression of three opsins in cone photoreceptors of the salamander Ambystoma tigrinum. J Comp Neurol. 2014 Jul 01; 522(10):2249-65.
    View in: PubMed
    Score: 0.009
  45. High resolution MALDI imaging mass spectrometry of retinal tissue lipids. J Am Soc Mass Spectrom. 2014 Aug; 25(8):1394-403.
    View in: PubMed
    Score: 0.009
  46. Albumin in the cornea is oxidized by hydrogen peroxide. Cornea. 1992 Nov; 11(6):567-72.
    View in: PubMed
    Score: 0.008
  47. Matrix-assisted laser desorption mass spectrometry of rhodopsin and bacteriorhodopsin. Biophys J. 1992 Nov; 63(5):1240-3.
    View in: PubMed
    Score: 0.008
  48. Interphotoreceptor retinoid-binding protein and alpha-tocopherol preserve the isomeric and oxidation state of retinol. Photochem Photobiol. 1992 Aug; 56(2):251-5.
    View in: PubMed
    Score: 0.008
  49. Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods. J Gen Physiol. 2012 Jun; 139(6):493-505.
    View in: PubMed
    Score: 0.008
  50. Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal. J Biol Chem. 2012 Jun 22; 287(26):22276-86.
    View in: PubMed
    Score: 0.008
  51. Lipofuscin and A2E accumulate with age in the retinal pigment epithelium of Nrl-/- mice. Photochem Photobiol. 2012 Nov-Dec; 88(6):1373-7.
    View in: PubMed
    Score: 0.008
  52. Spatial localization of A2E in the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2011 Jun 06; 52(7):3926-33.
    View in: PubMed
    Score: 0.007
  53. Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation. Invest Ophthalmol Vis Sci. 2011 Jun 01; 52(6):3483-91.
    View in: PubMed
    Score: 0.007
  54. The mammalian cone visual cycle promotes rapid M/L-cone pigment regeneration independently of the interphotoreceptor retinoid-binding protein. J Neurosci. 2011 May 25; 31(21):7900-9.
    View in: PubMed
    Score: 0.007
  55. Light prevents exogenous 11-cis retinal from maintaining cone photoreceptors in chromophore-deficient mice. Invest Ophthalmol Vis Sci. 2011 Apr; 52(5):2412-6.
    View in: PubMed
    Score: 0.007
  56. Mass spectrometry provides accurate and sensitive quantitation of A2E. Photochem Photobiol Sci. 2010 Nov; 9(11):1513-9.
    View in: PubMed
    Score: 0.007
  57. Binding of more than one retinoid to visual opsins. Biophys J. 2010 Oct 06; 99(7):2366-73.
    View in: PubMed
    Score: 0.007
  58. Age-related deterioration of rod vision in mice. J Neurosci. 2010 Aug 18; 30(33):11222-31.
    View in: PubMed
    Score: 0.007
  59. Palmitoylation stabilizes unliganded rod opsin. Proc Natl Acad Sci U S A. 2010 May 04; 107(18):8428-33.
    View in: PubMed
    Score: 0.007
  60. Photoreceptor development in premetamorphic and metamorphic Xenopus laevis. Anat Rec (Hoboken). 2010 Mar; 293(3):383-7.
    View in: PubMed
    Score: 0.007
  61. Transduction noise induced by 4-hydroxy retinals in rod photoreceptors. Biophys J. 1990 Jan; 57(1):109-15.
    View in: PubMed
    Score: 0.006
  62. Cytolysis of corneal epithelial cells by hydrogen peroxide. Exp Eye Res. 1990 Jan; 50(1):11-6.
    View in: PubMed
    Score: 0.006
  63. The 9-methyl group of retinal is essential for rapid Meta II decay and phototransduction quenching in red cones. J Gen Physiol. 2009 Aug; 134(2):137-50.
    View in: PubMed
    Score: 0.006
  64. Retinol-binding site in interphotoreceptor retinoid-binding protein (IRBP): a novel hydrophobic cavity. Invest Ophthalmol Vis Sci. 2009 Dec; 50(12):5577-86.
    View in: PubMed
    Score: 0.006
  65. Beta-ionone activates and bleaches visual pigment in salamander photoreceptors. Vis Neurosci. 2009 May-Jun; 26(3):267-74.
    View in: PubMed
    Score: 0.006
  66. Modulation of molecular interactions and function by rhodopsin palmitylation. Biochemistry. 2009 May 26; 48(20):4294-304.
    View in: PubMed
    Score: 0.006
  67. The 11-cis-retinol dehydrogenase activity of RDH10 and its interaction with visual cycle proteins. Invest Ophthalmol Vis Sci. 2009 Nov; 50(11):5089-97.
    View in: PubMed
    Score: 0.006
  68. Cone outer segment morphology and cone function in the Rpe65-/- Nrl-/- mouse retina are amenable to retinoid replacement. Invest Ophthalmol Vis Sci. 2009 Oct; 50(10):4858-64.
    View in: PubMed
    Score: 0.006
  69. The action of 11-cis-retinol on cone opsins and intact cone photoreceptors. J Biol Chem. 2009 Jun 12; 284(24):16492-16500.
    View in: PubMed
    Score: 0.006
  70. Activity of rhodopsin in vitamin A-deprived rats: light-dependent binding of G-protein. Curr Eye Res. 1989 Apr; 8(4):423-8.
    View in: PubMed
    Score: 0.006
  71. Analogue pigment studies of chromophore-protein interactions in metarhodopsins. Biochemistry. 1989 Jan 24; 28(2):907-12.
    View in: PubMed
    Score: 0.006
  72. Identification of a novel palmitylation site essential for membrane association and isomerohydrolase activity of RPE65. J Biol Chem. 2009 Jan 30; 284(5):3211-3218.
    View in: PubMed
    Score: 0.006
  73. Trafficking of membrane-associated proteins to cone photoreceptor outer segments requires the chromophore 11-cis-retinal. J Neurosci. 2008 Apr 09; 28(15):4008-14.
    View in: PubMed
    Score: 0.006
  74. Salamander blue-sensitive cones lost during metamorphosis. Photochem Photobiol. 2008 Jul-Aug; 84(4):855-62.
    View in: PubMed
    Score: 0.006
  75. Corneal oxygen scavenging systems: lysis of corneal epithelial cells by superoxide anions. Basic Life Sci. 1988; 49:1043-6.
    View in: PubMed
    Score: 0.006
  76. Fenretinide does not block visual pigment formation in the rat. J Ocul Pharmacol. 1988; 4(3):253-7.
    View in: PubMed
    Score: 0.006
  77. Chromophore switch from 11-cis-dehydroretinal (A2) to 11-cis-retinal (A1) decreases dark noise in salamander red rods. J Physiol. 2007 Nov 15; 585(Pt 1):57-74.
    View in: PubMed
    Score: 0.005
  78. Interphotoreceptor retinoid-binding protein is the physiologically relevant carrier that removes retinol from rod photoreceptor outer segments. Biochemistry. 2007 Jul 24; 46(29):8669-79.
    View in: PubMed
    Score: 0.005
  79. Studies of rhodopsin and bacteriorhodopsin using modified retinals. Photochem Photobiol. 1986 Dec; 44(6):803-7.
    View in: PubMed
    Score: 0.005
  80. Turning cones off: the role of the 9-methyl group of retinal in red cones. J Gen Physiol. 2006 Dec; 128(6):671-85.
    View in: PubMed
    Score: 0.005
  81. Differences in the pharmacological activation of visual opsins. Vis Neurosci. 2006 Nov-Dec; 23(6):899-908.
    View in: PubMed
    Score: 0.005
  82. Visual cycle and its metabolic support in gecko photoreceptors. Vision Res. 2007 Feb; 47(3):363-74.
    View in: PubMed
    Score: 0.005
  83. Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology. J Gen Physiol. 2006 Aug; 128(2):153-69.
    View in: PubMed
    Score: 0.005
  84. Preservative cytotoxicity to cultured corneal epithelial cells. Curr Eye Res. 1986 May; 5(5):367-72.
    View in: PubMed
    Score: 0.005
  85. The C terminus of lens aquaporin 0 interacts with the cytoskeletal proteins filensin and CP49. Invest Ophthalmol Vis Sci. 2006 Apr; 47(4):1562-70.
    View in: PubMed
    Score: 0.005
  86. RPE65 is an iron(II)-dependent isomerohydrolase in the retinoid visual cycle. J Biol Chem. 2006 Feb 03; 281(5):2835-40.
    View in: PubMed
    Score: 0.005
  87. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. Am J Pathol. 2005 Nov; 167(5):1451-9.
    View in: PubMed
    Score: 0.005
  88. Defining the retinoid binding site in the rod cyclic nucleotide-gated channel. J Gen Physiol. 2005 Nov; 126(5):453-60.
    View in: PubMed
    Score: 0.005
  89. Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice. J Physiol. 2005 Oct 01; 568(Pt 1):83-95.
    View in: PubMed
    Score: 0.005
  90. Breaking the covalent bond--a pigment property that contributes to desensitization in cones. Neuron. 2005 Jun 16; 46(6):879-90.
    View in: PubMed
    Score: 0.005
  91. Enhanced shutoff of phototransduction in transgenic mice expressing palmitoylation-deficient rhodopsin. J Biol Chem. 2005 Jul 01; 280(26):24293-300.
    View in: PubMed
    Score: 0.005
  92. Mass spectrometric analysis of integral membrane proteins at the subpicomolar level: application to rhodopsin. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Oct 25; 825(2):169-75.
    View in: PubMed
    Score: 0.005
  93. Downregulation of cone-specific gene expression and degeneration of cone photoreceptors in the Rpe65-/- mouse at early ages. Invest Ophthalmol Vis Sci. 2005 Apr; 46(4):1473-9.
    View in: PubMed
    Score: 0.005
  94. Phosphorylation and glycosylation of bovine lens MP20. Invest Ophthalmol Vis Sci. 2005 Feb; 46(2):627-35.
    View in: PubMed
    Score: 0.005
  95. A dark and constitutively active mutant of the tiger salamander UV pigment. Biochemistry. 2005 Jan 18; 44(2):799-804.
    View in: PubMed
    Score: 0.005
  96. Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors. Biophys J. 2005 Mar; 88(3):2278-87.
    View in: PubMed
    Score: 0.005
  97. Canine retinal superoxide dismutase: identity with the erythrocyte enzyme. Curr Eye Res. 1984 Dec; 3(12):1455-9.
    View in: PubMed
    Score: 0.005
  98. Identification of RDH10, an All-trans Retinol Dehydrogenase, in Retinal Muller Cells. Invest Ophthalmol Vis Sci. 2004 Nov; 45(11):3857-62.
    View in: PubMed
    Score: 0.004
  99. Physiological and microfluorometric studies of reduction and clearance of retinal in bleached rod photoreceptors. J Gen Physiol. 2004 Oct; 124(4):429-43.
    View in: PubMed
    Score: 0.004
  100. Probing rhodopsin-transducin interactions by surface modification and mass spectrometry. Biochemistry. 2004 Sep 07; 43(35):11153-62.
    View in: PubMed
    Score: 0.004
  101. The effect of age on corneal and lens superoxide dismutase. Curr Eye Res. 1984 Sep; 3(9):1119-23.
    View in: PubMed
    Score: 0.004
  102. Role of the 9-methyl group of retinal in cone visual pigments. Biochemistry. 2004 May 11; 43(18):5532-8.
    View in: PubMed
    Score: 0.004
  103. Localization of corneal superoxide dismutase by biochemical and histocytochemical techniques. Exp Eye Res. 1984 Apr; 38(4):369-78.
    View in: PubMed
    Score: 0.004
  104. Regeneration of rhodopsin and isorhodopsin in rod outer segment preparations: absence of effect of solvent parameters. Physiol Chem Phys Med NMR. 1984; 16(4):275-81.
    View in: PubMed
    Score: 0.004
  105. Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. EMBO J. 2004 Jan 14; 23(1):89-99.
    View in: PubMed
    Score: 0.004
  106. Water permeability of C-terminally truncated aquaporin 0 (AQP0 1-243) observed in the aging human lens. Invest Ophthalmol Vis Sci. 2003 Nov; 44(11):4820-8.
    View in: PubMed
    Score: 0.004
  107. Attenuation of streptozotocin diabetes with superoxide dismutase-like copper(II)(3,5-diisopropylsalicylate)2 in the rat. Diabetologia. 1983 Jun; 24(6):437-40.
    View in: PubMed
    Score: 0.004
  108. A novel Xenopus SWS2, P434 visual pigment: structure, cellular location, and spectral analyses. Mol Vis. 2003 May 16; 9:191-9.
    View in: PubMed
    Score: 0.004
  109. Structure-function analysis of rods and cones in juvenile, adult, and aged C57bl/6 and Balb/c mice. Vis Neurosci. 2003 Mar-Apr; 20(2):211-20.
    View in: PubMed
    Score: 0.004
  110. Retinyl esters are the substrate for isomerohydrolase. Biochemistry. 2003 Feb 25; 42(7):2229-38.
    View in: PubMed
    Score: 0.004
  111. Regulation of the visual cycle: retinol dehydrogenase and retinol fluorescence measurements in vertebrate retina. Adv Exp Med Biol. 2003; 533:353-60.
    View in: PubMed
    Score: 0.004
  112. Protective role of superoxide dismutase against diabetogenic drugs. J Clin Invest. 1982 Sep; 70(3):650-8.
    View in: PubMed
    Score: 0.004
  113. 11-cis-retinal reduces constitutive opsin phosphorylation and improves quantum catch in retinoid-deficient mouse rod photoreceptors. J Biol Chem. 2002 Oct 25; 277(43):40491-8.
    View in: PubMed
    Score: 0.004
  114. Identification of the RPE65 protein in mammalian cone photoreceptors. Invest Ophthalmol Vis Sci. 2002 May; 43(5):1604-9.
    View in: PubMed
    Score: 0.004
  115. Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron. 2001 Mar; 29(3):749-55.
    View in: PubMed
    Score: 0.003
  116. The inhibition of islet superoxide dismutase by diabetogenic drugs. Diabetes. 1981 Mar; 30(3):235-41.
    View in: PubMed
    Score: 0.003
  117. Incorporation of 11,12-dihydroretinal into the retinae of vitamin a deprived rats. Photochem Photobiol. 1981 Jan; 33(1):91-5.
    View in: PubMed
    Score: 0.003
  118. Fluorescence properties of pyrylretinol. Photochem Photobiol. 2000 Sep; 72(3):415-20.
    View in: PubMed
    Score: 0.003
  119. Bathoproducts of rhodopsin, isorhodopsin I, and isorhodopsin II. Biophys J. 1980 Feb; 29(2):247-56.
    View in: PubMed
    Score: 0.003
  120. The effect of retinal isomers on the VER and ERG of vitamin A deprived rats. Vision Res. 1980; 20(2):109-15.
    View in: PubMed
    Score: 0.003
  121. Isomerization of all-trans-9- and 13-desmethylretinol by retinal pigment epithelial cells. Biochemistry. 1999 Oct 12; 38(41):13542-50.
    View in: PubMed
    Score: 0.003
  122. Etoposide as a virocidal anticytomegalovirus therapy: intravitreal toxicology and pharmacology in rabbits. Aust N Z J Ophthalmol. 1999 Oct; 27(5):342-9.
    View in: PubMed
    Score: 0.003
  123. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet. 1998 Dec; 20(4):344-51.
    View in: PubMed
    Score: 0.003
  124. Superoxide dismutase activities of bovine ocular tissues. Exp Eye Res. 1978 Nov; 27(5):503-9.
    View in: PubMed
    Score: 0.003
  125. Identification of tryptophan oxidation products in bovine alpha-crystallin. Protein Sci. 1998 Nov; 7(11):2391-7.
    View in: PubMed
    Score: 0.003
  126. Sensitizing activity of 9,13-dicis retinal in bleached photoreceptors of the skate. Invest Ophthalmol Vis Sci. 1978 Oct; 17(10):1024-9.
    View in: PubMed
    Score: 0.003
  127. Molecular cloning of the salamander red and blue cone visual pigments. Mol Vis. 1998 Jul 15; 4:10.
    View in: PubMed
    Score: 0.003
  128. Radiolysis-induced oxidation of bovine alpha-crystallin. Photochem Photobiol. 1998 Jul; 68(1):9-15.
    View in: PubMed
    Score: 0.003
  129. Mass spectrometric analysis of integral membrane proteins: application to complete mapping of bacteriorhodopsins and rhodopsin. Protein Sci. 1998 Mar; 7(3):758-64.
    View in: PubMed
    Score: 0.003
  130. Identification of photooxidation sites in bovine alpha-crystallin. Photochem Photobiol. 1997 Nov; 66(5):635-41.
    View in: PubMed
    Score: 0.003
  131. Application of a submicroliter spectrophotometer in visual pigment studies. Mol Vis. 1997 Apr 30; 3:4.
    View in: PubMed
    Score: 0.003
  132. Formation of free radicals and protein mixed disulfides in rat red cells exposed to dapsone hydroxylamine. Free Radic Biol Med. 1997; 22(7):1183-93.
    View in: PubMed
    Score: 0.003
  133. The effect of visible light on the regeneration of rhodopsin. Biochem Biophys Res Commun. 1976 Nov 22; 73(2):428-33.
    View in: PubMed
    Score: 0.003
  134. Photosensitive pigments formed with rat opsin. Invest Ophthalmol. 1976 Oct; 15(10):872-5.
    View in: PubMed
    Score: 0.003
  135. Mechanisms of opsin activation. J Biol Chem. 1996 Aug 23; 271(34):20621-30.
    View in: PubMed
    Score: 0.003
  136. Bleached pigment activates transduction in salamander cones. J Gen Physiol. 1995 Sep; 106(3):543-57.
    View in: PubMed
    Score: 0.002
  137. Reduced light-dependent phosphorylation of an analog visual pigment containing 9-demethylretinal as its chromophore. J Biol Chem. 1995 Mar 24; 270(12):6718-21.
    View in: PubMed
    Score: 0.002
  138. Platelet-derived growth factor A-chain synthetic peptide inhibits human glioma xenograft proliferation in nude mice. Anticancer Res. 1995 Mar-Apr; 15(2):337-41.
    View in: PubMed
    Score: 0.002
  139. Identification of free radicals produced in rat erythrocytes exposed to hemolytic concentrations of phenylhydroxylamine. Free Radic Biol Med. 1995 Feb; 18(2):279-85.
    View in: PubMed
    Score: 0.002
  140. Rod outer segment retinol dehydrogenase: substrate specificity and role in phototransduction. Biochemistry. 1994 Nov 22; 33(46):13741-50.
    View in: PubMed
    Score: 0.002
  141. Relief of opsin desensitization and prolonged excitation of rod photoreceptors by 9-desmethylretinal. Proc Natl Acad Sci U S A. 1994 Jul 19; 91(15):6958-62.
    View in: PubMed
    Score: 0.002
  142. Noncovalent occupancy of the retinal-binding pocket of opsin diminishes bleaching adaptation of retinal cones. Neuron. 1993 Sep; 11(3):513-22.
    View in: PubMed
    Score: 0.002
  143. Mass spectrometric identification of phosphorylation sites in bleached bovine rhodopsin. Biochemistry. 1993 Jun 15; 32(23):5930-4.
    View in: PubMed
    Score: 0.002
  144. Immunolocalization of superoxide dismutase in Dirofilaria immitis adult worms. Infect Immun. 1993 Mar; 61(3):1157-63.
    View in: PubMed
    Score: 0.002
  145. Interphotoreceptor retinoid-binding protein (IRBP). Molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol. 1993; 7(1):61-85.
    View in: PubMed
    Score: 0.002
  146. Palmitylation of a G-protein coupled receptor. Direct analysis by tandem mass spectrometry. J Biol Chem. 1992 Aug 25; 267(24):16889-94.
    View in: PubMed
    Score: 0.002
  147. Oxygen diffusion-concentration product in rhodopsin as observed by a pulse ESR spin labeling method. Biophys J. 1992 Aug; 63(2):573-7.
    View in: PubMed
    Score: 0.002
  148. Effects of mechanical ventilation and spontaneous respiration on hemodynamics in calves with total artificial hearts. ASAIO J. 1992 Jul-Sep; 38(3):M493-6.
    View in: PubMed
    Score: 0.002
  149. Initial in vivo tests of an electrohydraulic actuated total artificial heart. ASAIO J. 1992 Jul-Sep; 38(3):M497-500.
    View in: PubMed
    Score: 0.002
  150. Dirofilaria immitis superoxide dismutase: purification and characterization. Mol Biochem Parasitol. 1991 Dec; 49(2):245-51.
    View in: PubMed
    Score: 0.002
  151. Arylamine-induced hemolytic anemia: electron spin resonance spectrometry studies. Adv Exp Med Biol. 1991; 283:253-5.
    View in: PubMed
    Score: 0.002
  152. Sensitization of bleached rod photoreceptors by 11-cis-locked analogues of retinal. Proc Natl Acad Sci U S A. 1990 Sep; 87(17):6823-7.
    View in: PubMed
    Score: 0.002
  153. Hydrogen peroxide is the most toxic oxygen species for Onchocerca cervicalis microfilariae. Parasitology. 1990 Jun; 100 Pt 3:407-15.
    View in: PubMed
    Score: 0.002
  154. Isolation and characterization of an ether glucuronide of zidovudine, a major metabolite in monkeys and humans. Drug Metab Dispos. 1990 May-Jun; 18(3):321-6.
    View in: PubMed
    Score: 0.002
  155. Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proc Natl Acad Sci U S A. 1989 Dec; 86(23):9606-10.
    View in: PubMed
    Score: 0.002
  156. An in vitro radiolabel uptake viability assay for Onchocerca microfilariae. J Parasitol. 1989 Feb; 75(1):142-4.
    View in: PubMed
    Score: 0.002
  157. Catalase pretreatment attenuates oleic acid-induced edema in isolated rabbit lung. J Appl Physiol (1985). 1988 Sep; 65(3):1301-6.
    View in: PubMed
    Score: 0.001
  158. Lack of interaction of rhodopsin chromophore with membrane lipids. An electron-electron double resonance study using 14N:15N pairs. Biophys J. 1988 Mar; 53(3):361-5.
    View in: PubMed
    Score: 0.001
  159. Immunolocalization of copper-zinc superoxide dismutase. II. Rat. J Histochem Cytochem. 1985 Aug; 33(8):803-8.
    View in: PubMed
    Score: 0.001
  160. Isomers of 3,7,11-trimethyldodeca-2,4,6,8,10-pentaenal (a linear analogue of retinal) and lower homologues in their interaction with bovine opsin and bacterioopsin. Photochem Photobiol. 1985 Feb; 41(2):171-4.
    View in: PubMed
    Score: 0.001
  161. Immunolocalization of CuZn superoxide dismutase in striated muscle. Histochem J. 1985 Feb; 17(2):259-62.
    View in: PubMed
    Score: 0.001
  162. Cycloheptatrienylidene analog of 11-cis retinal. Formation of pigment in photoreceptor membranes. Invest Ophthalmol Vis Sci. 1984 Apr; 25(4):419-28.
    View in: PubMed
    Score: 0.001
  163. Computer modeling of the recombination reaction of rhodopsin. Comput Biol Med. 1984; 14(4):403-10.
    View in: PubMed
    Score: 0.001
  164. The immunolocalization of copper-zinc superoxide dismutase in canine tissues. J Histochem Cytochem. 1983 Dec; 31(12):1399-406.
    View in: PubMed
    Score: 0.001
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.