Connection

Rosalie Crouch to Dark Adaptation

This is a "connection" page, showing publications Rosalie Crouch has written about Dark Adaptation.
Connection Strength

0.618
  1. Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods. J Gen Physiol. 2012 Jun; 139(6):493-505.
    View in: PubMed
    Score: 0.098
  2. Rhodopsin phosphorylation in rats exposed to intense light. Photochem Photobiol. 2005 May-Jun; 81(3):541-7.
    View in: PubMed
    Score: 0.060
  3. Correlation of regenerable opsin with rod ERG signal in Rpe65-/- mice during development and aging. Invest Ophthalmol Vis Sci. 2003 Jan; 44(1):310-5.
    View in: PubMed
    Score: 0.051
  4. Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron. 2001 Mar; 29(3):749-55.
    View in: PubMed
    Score: 0.045
  5. Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors. J Gen Physiol. 2000 Aug; 116(2):283-97.
    View in: PubMed
    Score: 0.043
  6. Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors. J Gen Physiol. 1999 Mar; 113(3):491-503.
    View in: PubMed
    Score: 0.039
  7. Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin. Biochemistry. 1997 Jul 22; 36(29):8671-6.
    View in: PubMed
    Score: 0.035
  8. Mutation of a surface residue, lysine-129, reverses the order of proton release and uptake in bacteriorhodopsin; guanidine hydrochloride restores it. Biophys J. 1997 Feb; 72(2 Pt 1):886-98.
    View in: PubMed
    Score: 0.034
  9. Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle. Biochemistry. 1993 Oct 05; 32(39):10331-43.
    View in: PubMed
    Score: 0.027
  10. Light prevents exogenous 11-cis retinal from maintaining cone photoreceptors in chromophore-deficient mice. Invest Ophthalmol Vis Sci. 2011 Apr; 52(5):2412-6.
    View in: PubMed
    Score: 0.023
  11. Age-related deterioration of rod vision in mice. J Neurosci. 2010 Aug 18; 30(33):11222-31.
    View in: PubMed
    Score: 0.022
  12. Beta-ionone activates and bleaches visual pigment in salamander photoreceptors. Vis Neurosci. 2009 May-Jun; 26(3):267-74.
    View in: PubMed
    Score: 0.020
  13. The action of 11-cis-retinol on cone opsins and intact cone photoreceptors. J Biol Chem. 2009 Jun 12; 284(24):16492-16500.
    View in: PubMed
    Score: 0.020
  14. Turning cones off: the role of the 9-methyl group of retinal in red cones. J Gen Physiol. 2006 Dec; 128(6):671-85.
    View in: PubMed
    Score: 0.017
  15. Differences in the pharmacological activation of visual opsins. Vis Neurosci. 2006 Nov-Dec; 23(6):899-908.
    View in: PubMed
    Score: 0.017
  16. Visual cycle and its metabolic support in gecko photoreceptors. Vision Res. 2007 Feb; 47(3):363-74.
    View in: PubMed
    Score: 0.017
  17. Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice. J Physiol. 2005 Oct 01; 568(Pt 1):83-95.
    View in: PubMed
    Score: 0.015
  18. Breaking the covalent bond--a pigment property that contributes to desensitization in cones. Neuron. 2005 Jun 16; 46(6):879-90.
    View in: PubMed
    Score: 0.015
  19. The effect of retinal isomers on the VER and ERG of vitamin A deprived rats. Vision Res. 1980; 20(2):109-15.
    View in: PubMed
    Score: 0.010
  20. Sensitizing activity of 9,13-dicis retinal in bleached photoreceptors of the skate. Invest Ophthalmol Vis Sci. 1978 Oct; 17(10):1024-9.
    View in: PubMed
    Score: 0.010
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.