Connection

Rosalie Crouch to Retinaldehyde

This is a "connection" page, showing publications Rosalie Crouch has written about Retinaldehyde.
Connection Strength

5.289
  1. Ligand control of g protein-coupled receptor activity: new insights. Chem Biol. 2014 Mar 20; 21(3):309-10.
    View in: PubMed
    Score: 0.442
  2. Probing human red cone opsin activity with retinal analogues. J Nat Prod. 2011 Mar 25; 74(3):391-4.
    View in: PubMed
    Score: 0.357
  3. Effective and sustained delivery of hydrophobic retinoids to photoreceptors. Invest Ophthalmol Vis Sci. 2010 Nov; 51(11):5958-64.
    View in: PubMed
    Score: 0.341
  4. In vitro assays of rod and cone opsin activity: retinoid analogs as agonists and inverse agonists. Methods Mol Biol. 2010; 652:85-94.
    View in: PubMed
    Score: 0.330
  5. 11-cis- and all-trans-retinols can activate rod opsin: rational design of the visual cycle. Biochemistry. 2008 Jul 15; 47(28):7567-71.
    View in: PubMed
    Score: 0.297
  6. 9-cis Retinal increased in retina of RPE65 knockout mice with decrease in coat pigmentation. Photochem Photobiol. 2006 Nov-Dec; 82(6):1461-7.
    View in: PubMed
    Score: 0.265
  7. Cone opsin mislocalization in Rpe65-/- mice: a defect that can be corrected by 11-cis retinal. Invest Ophthalmol Vis Sci. 2005 Oct; 46(10):3876-82.
    View in: PubMed
    Score: 0.246
  8. Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors. J Gen Physiol. 2000 Aug; 116(2):283-97.
    View in: PubMed
    Score: 0.172
  9. Synthetic retinals: convenient probes of rhodopsin and visual transduction process. Methods Enzymol. 2000; 315:219-37.
    View in: PubMed
    Score: 0.165
  10. Retinoids and the visual process. Photochem Photobiol. 1996 Oct; 64(4):613-21.
    View in: PubMed
    Score: 0.132
  11. The 11-cis Retinal Origins of Lipofuscin in the Retina. Prog Mol Biol Transl Sci. 2015; 134:e1-12.
    View in: PubMed
    Score: 0.117
  12. Probing of the retinal binding site of bacteriorhodopsin by affinity labeling. Biochemistry. 1994 Sep 27; 33(38):11624-30.
    View in: PubMed
    Score: 0.115
  13. Azidotetrafluorophenyl retinal analogue: synthesis and bacteriorhodopsin pigment formation. Photochem Photobiol. 1994 Jul; 60(1):64-8.
    View in: PubMed
    Score: 0.113
  14. Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods. J Gen Physiol. 2012 Jun; 139(6):493-505.
    View in: PubMed
    Score: 0.098
  15. Ring oxidized retinals form unusual bacteriorhodopsin analogue pigments. Photochem Photobiol. 1991 Dec; 54(6):977-83.
    View in: PubMed
    Score: 0.094
  16. Light prevents exogenous 11-cis retinal from maintaining cone photoreceptors in chromophore-deficient mice. Invest Ophthalmol Vis Sci. 2011 Apr; 52(5):2412-6.
    View in: PubMed
    Score: 0.090
  17. Transduction noise induced by 4-hydroxy retinals in rod photoreceptors. Biophys J. 1990 Jan; 57(1):109-15.
    View in: PubMed
    Score: 0.083
  18. The 9-methyl group of retinal is essential for rapid Meta II decay and phototransduction quenching in red cones. J Gen Physiol. 2009 Aug; 134(2):137-50.
    View in: PubMed
    Score: 0.080
  19. Cone outer segment morphology and cone function in the Rpe65-/- Nrl-/- mouse retina are amenable to retinoid replacement. Invest Ophthalmol Vis Sci. 2009 Oct; 50(10):4858-64.
    View in: PubMed
    Score: 0.079
  20. Analogue pigment studies of chromophore-protein interactions in metarhodopsins. Biochemistry. 1989 Jan 24; 28(2):907-12.
    View in: PubMed
    Score: 0.077
  21. Trafficking of membrane-associated proteins to cone photoreceptor outer segments requires the chromophore 11-cis-retinal. J Neurosci. 2008 Apr 09; 28(15):4008-14.
    View in: PubMed
    Score: 0.073
  22. Rpe65-/- and Lrat-/- mice: comparable models of leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2008 Jun; 49(6):2384-9.
    View in: PubMed
    Score: 0.073
  23. Chromophore switch from 11-cis-dehydroretinal (A2) to 11-cis-retinal (A1) decreases dark noise in salamander red rods. J Physiol. 2007 Nov 15; 585(Pt 1):57-74.
    View in: PubMed
    Score: 0.070
  24. Studies of rhodopsin and bacteriorhodopsin using modified retinals. Photochem Photobiol. 1986 Dec; 44(6):803-7.
    View in: PubMed
    Score: 0.067
  25. Turning cones off: the role of the 9-methyl group of retinal in red cones. J Gen Physiol. 2006 Dec; 128(6):671-85.
    View in: PubMed
    Score: 0.066
  26. Properties of synthetic bacteriorhodopsin pigments. Further probes of the chromophore binding site. Photochem Photobiol. 1986 Mar; 43(3):297-303.
    View in: PubMed
    Score: 0.063
  27. Breaking the covalent bond--a pigment property that contributes to desensitization in cones. Neuron. 2005 Jun 16; 46(6):879-90.
    View in: PubMed
    Score: 0.060
  28. A dark and constitutively active mutant of the tiger salamander UV pigment. Biochemistry. 2005 Jan 18; 44(2):799-804.
    View in: PubMed
    Score: 0.059
  29. Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors. Biophys J. 2005 Mar; 88(3):2278-87.
    View in: PubMed
    Score: 0.058
  30. Physiological and microfluorometric studies of reduction and clearance of retinal in bleached rod photoreceptors. J Gen Physiol. 2004 Oct; 124(4):429-43.
    View in: PubMed
    Score: 0.057
  31. Role of the 9-methyl group of retinal in cone visual pigments. Biochemistry. 2004 May 11; 43(18):5532-8.
    View in: PubMed
    Score: 0.056
  32. Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice. Proc Natl Acad Sci U S A. 2003 Nov 11; 100(23):13662-7.
    View in: PubMed
    Score: 0.054
  33. Correlation of regenerable opsin with rod ERG signal in Rpe65-/- mice during development and aging. Invest Ophthalmol Vis Sci. 2003 Jan; 44(1):310-5.
    View in: PubMed
    Score: 0.051
  34. 11-cis-retinal reduces constitutive opsin phosphorylation and improves quantum catch in retinoid-deficient mouse rod photoreceptors. J Biol Chem. 2002 Oct 25; 277(43):40491-8.
    View in: PubMed
    Score: 0.049
  35. Inhibition of rhodopsin regeneration by cyclohexyl derivatives. Vision Res. 1982; 22(12):1451-6.
    View in: PubMed
    Score: 0.047
  36. Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron. 2001 Mar; 29(3):749-55.
    View in: PubMed
    Score: 0.045
  37. Photochemical and functional properties of bacteriorhodopsins formed from 5,6-dihydro- and 5,6-dihydrodesmethylretinals. Biochemistry. 1981 Jan 20; 20(2):428-35.
    View in: PubMed
    Score: 0.044
  38. Incorporation of 11,12-dihydroretinal into the retinae of vitamin a deprived rats. Photochem Photobiol. 1981 Jan; 33(1):91-5.
    View in: PubMed
    Score: 0.044
  39. The effect of retinal isomers on the VER and ERG of vitamin A deprived rats. Vision Res. 1980; 20(2):109-15.
    View in: PubMed
    Score: 0.041
  40. Studies on pyrylretinal analogues of bacteriorhodopsin. Photochem Photobiol. 1999 Dec; 70(6):949-56.
    View in: PubMed
    Score: 0.041
  41. Isomerization of all-trans-9- and 13-desmethylretinol by retinal pigment epithelial cells. Biochemistry. 1999 Oct 12; 38(41):13542-50.
    View in: PubMed
    Score: 0.041
  42. Categorizing reactivity of bacteriorhodopsin cysteine mutants crosslinking to 4-bromoretinal. Biochem Mol Biol Int. 1999 May; 47(5):773-80.
    View in: PubMed
    Score: 0.039
  43. Sensitizing activity of 9,13-dicis retinal in bleached photoreceptors of the skate. Invest Ophthalmol Vis Sci. 1978 Oct; 17(10):1024-9.
    View in: PubMed
    Score: 0.038
  44. Physiological activity of retinoids in natural and artificial visual pigments. Photochem Photobiol. 1996 May; 63(5):595-600.
    View in: PubMed
    Score: 0.032
  45. Isorhodopsin II: artificial photosensitive pigment formed from 9,13-dicis retinal. Proc Natl Acad Sci U S A. 1975 Apr; 72(4):1538-42.
    View in: PubMed
    Score: 0.030
  46. Reduced light-dependent phosphorylation of an analog visual pigment containing 9-demethylretinal as its chromophore. J Biol Chem. 1995 Mar 24; 270(12):6718-21.
    View in: PubMed
    Score: 0.030
  47. Relief of opsin desensitization and prolonged excitation of rod photoreceptors by 9-desmethylretinal. Proc Natl Acad Sci U S A. 1994 Jul 19; 91(15):6958-62.
    View in: PubMed
    Score: 0.028
  48. Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal. J Biol Chem. 2012 Jun 22; 287(26):22276-86.
    View in: PubMed
    Score: 0.024
  49. Sensitization of bleached rod photoreceptors by 11-cis-locked analogues of retinal. Proc Natl Acad Sci U S A. 1990 Sep; 87(17):6823-7.
    View in: PubMed
    Score: 0.022
  50. Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proc Natl Acad Sci U S A. 1989 Dec; 86(23):9606-10.
    View in: PubMed
    Score: 0.021
  51. Lack of interaction of rhodopsin chromophore with membrane lipids. An electron-electron double resonance study using 14N:15N pairs. Biophys J. 1988 Mar; 53(3):361-5.
    View in: PubMed
    Score: 0.018
  52. Fenretinide does not block visual pigment formation in the rat. J Ocul Pharmacol. 1988; 4(3):253-7.
    View in: PubMed
    Score: 0.018
  53. Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology. J Gen Physiol. 2006 Aug; 128(2):153-69.
    View in: PubMed
    Score: 0.016
  54. Effect of variation of retinal polyene side-chain length on formation and function of bacteriorhodopsin analogue pigments. Biochemistry. 1986 Apr 22; 25(8):2022-7.
    View in: PubMed
    Score: 0.016
  55. Defining the retinoid binding site in the rod cyclic nucleotide-gated channel. J Gen Physiol. 2005 Nov; 126(5):453-60.
    View in: PubMed
    Score: 0.015
  56. Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice. J Physiol. 2005 Oct 01; 568(Pt 1):83-95.
    View in: PubMed
    Score: 0.015
  57. Downregulation of cone-specific gene expression and degeneration of cone photoreceptors in the Rpe65-/- mouse at early ages. Invest Ophthalmol Vis Sci. 2005 Apr; 46(4):1473-9.
    View in: PubMed
    Score: 0.015
  58. Cycloheptatrienylidene analog of 11-cis retinal. Formation of pigment in photoreceptor membranes. Invest Ophthalmol Vis Sci. 1984 Apr; 25(4):419-28.
    View in: PubMed
    Score: 0.014
  59. Regeneration of rhodopsin and isorhodopsin in rod outer segment preparations: absence of effect of solvent parameters. Physiol Chem Phys Med NMR. 1984; 16(4):275-81.
    View in: PubMed
    Score: 0.014
  60. Mechanisms of opsin activation. J Biol Chem. 1996 Aug 23; 271(34):20621-30.
    View in: PubMed
    Score: 0.008
  61. Quantitative aspects of the photochemistry of isomeric retinals and visual pigments. J Am Chem Soc. 1976 Jul 07; 98(14):4189-92.
    View in: PubMed
    Score: 0.008
  62. Molecular flow resonance Raman effect from retinal and rhodopsin. Biochemistry. 1976 Apr 20; 15(8):1621-9.
    View in: PubMed
    Score: 0.008
  63. Rod outer segment retinol dehydrogenase: substrate specificity and role in phototransduction. Biochemistry. 1994 Nov 22; 33(46):13741-50.
    View in: PubMed
    Score: 0.007
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.