Connection

Rosalie Crouch to Rhodopsin

This is a "connection" page, showing publications Rosalie Crouch has written about Rhodopsin.
Connection Strength

3.886
  1. Ligand control of g protein-coupled receptor activity: new insights. Chem Biol. 2014 Mar 20; 21(3):309-10.
    View in: PubMed
    Score: 0.422
  2. 11-cis- and all-trans-retinols can activate rod opsin: rational design of the visual cycle. Biochemistry. 2008 Jul 15; 47(28):7567-71.
    View in: PubMed
    Score: 0.283
  3. Quantitation of the effect of hydroxylamine on rhodopsin palmitylation. Photochem Photobiol. 2008 Jul-Aug; 84(4):949-55.
    View in: PubMed
    Score: 0.279
  4. Rhodopsin phosphorylation in rats exposed to intense light. Photochem Photobiol. 2005 May-Jun; 81(3):541-7.
    View in: PubMed
    Score: 0.228
  5. Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice. Proc Natl Acad Sci U S A. 2003 Nov 11; 100(23):13662-7.
    View in: PubMed
    Score: 0.205
  6. Mass spectrometric analysis of rhodopsin from light damaged rats. Mol Vis. 2000 Jun 27; 6:109-15.
    View in: PubMed
    Score: 0.163
  7. Synthetic retinals: convenient probes of rhodopsin and visual transduction process. Methods Enzymol. 2000; 315:219-37.
    View in: PubMed
    Score: 0.157
  8. Molecular cloning of a rhodopsin gene from salamander rods. Invest Ophthalmol Vis Sci. 1996 Aug; 37(9):1907-13.
    View in: PubMed
    Score: 0.124
  9. Matrix-assisted laser desorption mass spectrometry of rhodopsin and bacteriorhodopsin. Biophys J. 1992 Nov; 63(5):1240-3.
    View in: PubMed
    Score: 0.096
  10. Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation. Invest Ophthalmol Vis Sci. 2011 Jun 01; 52(6):3483-91.
    View in: PubMed
    Score: 0.087
  11. Light prevents exogenous 11-cis retinal from maintaining cone photoreceptors in chromophore-deficient mice. Invest Ophthalmol Vis Sci. 2011 Apr; 52(5):2412-6.
    View in: PubMed
    Score: 0.086
  12. Probing human red cone opsin activity with retinal analogues. J Nat Prod. 2011 Mar 25; 74(3):391-4.
    View in: PubMed
    Score: 0.085
  13. Binding of more than one retinoid to visual opsins. Biophys J. 2010 Oct 06; 99(7):2366-73.
    View in: PubMed
    Score: 0.083
  14. Effective and sustained delivery of hydrophobic retinoids to photoreceptors. Invest Ophthalmol Vis Sci. 2010 Nov; 51(11):5958-64.
    View in: PubMed
    Score: 0.081
  15. The 9-methyl group of retinal is essential for rapid Meta II decay and phototransduction quenching in red cones. J Gen Physiol. 2009 Aug; 134(2):137-50.
    View in: PubMed
    Score: 0.076
  16. Modulation of molecular interactions and function by rhodopsin palmitylation. Biochemistry. 2009 May 26; 48(20):4294-304.
    View in: PubMed
    Score: 0.076
  17. Activity of rhodopsin in vitamin A-deprived rats: light-dependent binding of G-protein. Curr Eye Res. 1989 Apr; 8(4):423-8.
    View in: PubMed
    Score: 0.075
  18. Analogue pigment studies of chromophore-protein interactions in metarhodopsins. Biochemistry. 1989 Jan 24; 28(2):907-12.
    View in: PubMed
    Score: 0.074
  19. Fenretinide does not block visual pigment formation in the rat. J Ocul Pharmacol. 1988; 4(3):253-7.
    View in: PubMed
    Score: 0.069
  20. Studies of rhodopsin and bacteriorhodopsin using modified retinals. Photochem Photobiol. 1986 Dec; 44(6):803-7.
    View in: PubMed
    Score: 0.064
  21. 9-cis Retinal increased in retina of RPE65 knockout mice with decrease in coat pigmentation. Photochem Photobiol. 2006 Nov-Dec; 82(6):1461-7.
    View in: PubMed
    Score: 0.063
  22. Palmitylation of cone opsins. Vision Res. 2006 Dec; 46(27):4493-501.
    View in: PubMed
    Score: 0.063
  23. Cone opsin mislocalization in Rpe65-/- mice: a defect that can be corrected by 11-cis retinal. Invest Ophthalmol Vis Sci. 2005 Oct; 46(10):3876-82.
    View in: PubMed
    Score: 0.059
  24. Enhanced shutoff of phototransduction in transgenic mice expressing palmitoylation-deficient rhodopsin. J Biol Chem. 2005 Jul 01; 280(26):24293-300.
    View in: PubMed
    Score: 0.057
  25. Mass spectrometric analysis of integral membrane proteins at the subpicomolar level: application to rhodopsin. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Oct 25; 825(2):169-75.
    View in: PubMed
    Score: 0.057
  26. Probing rhodopsin-transducin interactions by surface modification and mass spectrometry. Biochemistry. 2004 Sep 07; 43(35):11153-62.
    View in: PubMed
    Score: 0.054
  27. Regeneration of rhodopsin and isorhodopsin in rod outer segment preparations: absence of effect of solvent parameters. Physiol Chem Phys Med NMR. 1984; 16(4):275-81.
    View in: PubMed
    Score: 0.052
  28. Inhibition of rhodopsin regeneration by cyclohexyl derivatives. Vision Res. 1982; 22(12):1451-6.
    View in: PubMed
    Score: 0.045
  29. Intrahelical arrangement in the integral membrane protein rhodopsin investigated by site-specific chemical cleavage and mass spectrometry. Biochemistry. 2000 Apr 25; 39(16):4907-14.
    View in: PubMed
    Score: 0.040
  30. Bathoproducts of rhodopsin, isorhodopsin I, and isorhodopsin II. Biophys J. 1980 Feb; 29(2):247-56.
    View in: PubMed
    Score: 0.040
  31. Mass spectrometric analysis of integral membrane proteins: application to complete mapping of bacteriorhodopsins and rhodopsin. Protein Sci. 1998 Mar; 7(3):758-64.
    View in: PubMed
    Score: 0.035
  32. The effect of visible light on the regeneration of rhodopsin. Biochem Biophys Res Commun. 1976 Nov 22; 73(2):428-33.
    View in: PubMed
    Score: 0.032
  33. Mechanisms of opsin activation. J Biol Chem. 1996 Aug 23; 271(34):20621-30.
    View in: PubMed
    Score: 0.031
  34. Physiological activity of retinoids in natural and artificial visual pigments. Photochem Photobiol. 1996 May; 63(5):595-600.
    View in: PubMed
    Score: 0.031
  35. Imaging mass spectrometry of the visual system: Advancing the molecular understanding of retina degenerations. Proteomics Clin Appl. 2016 Apr; 10(4):391-402.
    View in: PubMed
    Score: 0.030
  36. Isorhodopsin II: artificial photosensitive pigment formed from 9,13-dicis retinal. Proc Natl Acad Sci U S A. 1975 Apr; 72(4):1538-42.
    View in: PubMed
    Score: 0.028
  37. Reduced light-dependent phosphorylation of an analog visual pigment containing 9-demethylretinal as its chromophore. J Biol Chem. 1995 Mar 24; 270(12):6718-21.
    View in: PubMed
    Score: 0.028
  38. The 11-cis Retinal Origins of Lipofuscin in the Retina. Prog Mol Biol Transl Sci. 2015; 134:e1-12.
    View in: PubMed
    Score: 0.028
  39. Mass spectrometric identification of phosphorylation sites in bleached bovine rhodopsin. Biochemistry. 1993 Jun 15; 32(23):5930-4.
    View in: PubMed
    Score: 0.025
  40. Palmitylation of a G-protein coupled receptor. Direct analysis by tandem mass spectrometry. J Biol Chem. 1992 Aug 25; 267(24):16889-94.
    View in: PubMed
    Score: 0.024
  41. Oxygen diffusion-concentration product in rhodopsin as observed by a pulse ESR spin labeling method. Biophys J. 1992 Aug; 63(2):573-7.
    View in: PubMed
    Score: 0.024
  42. Lack of interaction of rhodopsin chromophore with membrane lipids. An electron-electron double resonance study using 14N:15N pairs. Biophys J. 1988 Mar; 53(3):361-5.
    View in: PubMed
    Score: 0.017
  43. Turning cones off: the role of the 9-methyl group of retinal in red cones. J Gen Physiol. 2006 Dec; 128(6):671-85.
    View in: PubMed
    Score: 0.016
  44. Visual cycle and its metabolic support in gecko photoreceptors. Vision Res. 2007 Feb; 47(3):363-74.
    View in: PubMed
    Score: 0.016
  45. Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology. J Gen Physiol. 2006 Aug; 128(2):153-69.
    View in: PubMed
    Score: 0.015
  46. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. Am J Pathol. 2005 Nov; 167(5):1451-9.
    View in: PubMed
    Score: 0.015
  47. Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice. J Physiol. 2005 Oct 01; 568(Pt 1):83-95.
    View in: PubMed
    Score: 0.014
  48. Downregulation of cone-specific gene expression and degeneration of cone photoreceptors in the Rpe65-/- mouse at early ages. Invest Ophthalmol Vis Sci. 2005 Apr; 46(4):1473-9.
    View in: PubMed
    Score: 0.014
  49. Role of the 9-methyl group of retinal in cone visual pigments. Biochemistry. 2004 May 11; 43(18):5532-8.
    View in: PubMed
    Score: 0.013
  50. Computer modeling of the recombination reaction of rhodopsin. Comput Biol Med. 1984; 14(4):403-10.
    View in: PubMed
    Score: 0.013
  51. Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. EMBO J. 2004 Jan 14; 23(1):89-99.
    View in: PubMed
    Score: 0.013
  52. Incorporation of 11,12-dihydroretinal into the retinae of vitamin a deprived rats. Photochem Photobiol. 1981 Jan; 33(1):91-5.
    View in: PubMed
    Score: 0.011
  53. The effect of retinal isomers on the VER and ERG of vitamin A deprived rats. Vision Res. 1980; 20(2):109-15.
    View in: PubMed
    Score: 0.010
  54. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet. 1998 Dec; 20(4):344-51.
    View in: PubMed
    Score: 0.009
  55. Sensitizing activity of 9,13-dicis retinal in bleached photoreceptors of the skate. Invest Ophthalmol Vis Sci. 1978 Oct; 17(10):1024-9.
    View in: PubMed
    Score: 0.009
  56. Application of a submicroliter spectrophotometer in visual pigment studies. Mol Vis. 1997 Apr 30; 3:4.
    View in: PubMed
    Score: 0.008
  57. Photosensitive pigments formed with rat opsin. Invest Ophthalmol. 1976 Oct; 15(10):872-5.
    View in: PubMed
    Score: 0.008
  58. Molecular flow resonance Raman effect from retinal and rhodopsin. Biochemistry. 1976 Apr 20; 15(8):1621-9.
    View in: PubMed
    Score: 0.008
  59. Rod outer segment retinol dehydrogenase: substrate specificity and role in phototransduction. Biochemistry. 1994 Nov 22; 33(46):13741-50.
    View in: PubMed
    Score: 0.007
  60. Interphotoreceptor retinoid-binding protein (IRBP). Molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol. 1993; 7(1):61-85.
    View in: PubMed
    Score: 0.006
  61. Cycloheptatrienylidene analog of 11-cis retinal. Formation of pigment in photoreceptor membranes. Invest Ophthalmol Vis Sci. 1984 Apr; 25(4):419-28.
    View in: PubMed
    Score: 0.003
  62. Quantitative aspects of the photochemistry of isomeric retinals and visual pigments. J Am Chem Soc. 1976 Jul 07; 98(14):4189-92.
    View in: PubMed
    Score: 0.002
  63. Letter: Allenic retinals and visual pigment analogues. J Am Chem Soc. 1976 Jan 07; 98(1):236-8.
    View in: PubMed
    Score: 0.002
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.