Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Daniel Steinberg and Carlo De Cecco.
Connection Strength

0.871
  1. Diagnostic accuracy of coronary CT angiography using 3rd-generation dual-source CT and automated tube voltage selection: Clinical application in a non-obese and obese patient population. Eur Radiol. 2017 Jun; 27(6):2298-2308.
    View in: PubMed
    Score: 0.142
  2. A non-contrast self-navigated 3-dimensional MR technique for aortic root and vascular access route assessment in the context of transcatheter aortic valve replacement: proof of concept. Eur Radiol. 2016 Apr; 26(4):951-8.
    View in: PubMed
    Score: 0.131
  3. Low-volume contrast medium protocol for comprehensive cardiac and aortoiliac CT assessment in the context of transcatheter aortic valve replacement. Acad Radiol. 2015 Sep; 22(9):1138-46.
    View in: PubMed
    Score: 0.130
  4. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry. JACC Cardiovasc Imaging. 2020 03; 13(3):760-770.
    View in: PubMed
    Score: 0.043
  5. Coronary CT Angiography-derived Fractional Flow Reserve: Machine Learning Algorithm versus Computational Fluid Dynamics Modeling. Radiology. 2018 Jul; 288(1):64-72.
    View in: PubMed
    Score: 0.040
  6. Coronary CT Angiography-derived Fractional Flow Reserve. Radiology. 2017 10; 285(1):17-33.
    View in: PubMed
    Score: 0.038
  7. Coronary Computed Tomographic Angiography-Derived Fractional Flow Reserve for Therapeutic Decision Making. Am J Cardiol. 2017 Dec 15; 120(12):2121-2127.
    View in: PubMed
    Score: 0.038
  8. Coronary Computed Tomographic Angiography-Derived Fractional Flow Reserve Based on Machine Learning for Risk Stratification of Non-Culprit Coronary Narrowings in Patients with Acute Coronary Syndrome. Am J Cardiol. 2017 Oct 15; 120(8):1260-1266.
    View in: PubMed
    Score: 0.038
  9. CT angiography for planning transcatheter aortic valve replacement using automated tube voltage selection: Image quality and radiation exposure. Eur J Radiol. 2017 Jan; 86:276-283.
    View in: PubMed
    Score: 0.036
  10. Correlation and predictive value of aortic root calcification markers with coronary artery calcification and obstructive coronary artery disease. Radiol Med. 2017 Feb; 122(2):113-120.
    View in: PubMed
    Score: 0.036
  11. Coronary CT angiography-derived quantitative markers for predicting in-stent restenosis. J Cardiovasc Comput Tomogr. 2016 Sep-Oct; 10(5):377-83.
    View in: PubMed
    Score: 0.035
  12. Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis. J Cardiovasc Comput Tomogr. 2016 May-Jun; 10(3):199-206.
    View in: PubMed
    Score: 0.034
  13. Vascular Imaging Before Transcatheter Aortic Valve Replacement (TAVR): Why and How? Curr Cardiol Rep. 2016 Feb; 18(2):14.
    View in: PubMed
    Score: 0.034
  14. Transcatheter Aortic Valve Replacement: Imaging Techniques for Aortic Root Sizing. J Thorac Imaging. 2015 Nov; 30(6):349-58.
    View in: PubMed
    Score: 0.033
  15. Diagnostic value of quantitative stenosis predictors with coronary CT angiography compared to invasive fractional flow reserve. Eur J Radiol. 2015 Aug; 84(8):1509-1515.
    View in: PubMed
    Score: 0.032
  16. Dual-source CT imaging to plan transcatheter aortic valve replacement: accuracy for diagnosis of obstructive coronary artery disease. Radiology. 2015 Apr; 275(1):80-8.
    View in: PubMed
    Score: 0.031
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.