Connection

Judy Dubno to Speech Perception

This is a "connection" page, showing publications Judy Dubno has written about Speech Perception.
Connection Strength

17.528
  1. Phonological and semantic similarity of misperceived words in babble: Effects of sentence context, age, and hearing loss. J Acoust Soc Am. 2022 01; 151(1):650.
    View in: PubMed
    Score: 0.602
  2. Unique patterns of hearing loss and cognition in older adults' neural responses to cues for speech recognition difficulty. Brain Struct Funct. 2022 Jan; 227(1):203-218.
    View in: PubMed
    Score: 0.592
  3. Glimpsing keywords across sentences in noise: A microstructural analysis of acoustic, lexical, and listener factors. J Acoust Soc Am. 2021 09; 150(3):1979.
    View in: PubMed
    Score: 0.588
  4. Role of Preoperative Patient Expectations in Adult Cochlear Implant Outcomes. Otol Neurotol. 2021 02 01; 42(2):e130-e136.
    View in: PubMed
    Score: 0.565
  5. Comparing Speech Recognition for Listeners With Normal and Impaired Hearing: Simulations for Controlling Differences in Speech Levels and Spectral Shape. J Speech Lang Hear Res. 2020 12 14; 63(12):4289-4299.
    View in: PubMed
    Score: 0.556
  6. Sentence perception in noise by hearing-aid users predicted by syllable-constituent perception and the use of context. J Acoust Soc Am. 2020 01; 147(1):273.
    View in: PubMed
    Score: 0.524
  7. Contributions of Voice Expectations to Talker Selection in Younger and Older Adults With Normal Hearing. Trends Hear. 2020 Jan-Dec; 24:2331216520915110.
    View in: PubMed
    Score: 0.524
  8. Age effects on the contributions of envelope and periodicity cues to recognition of interrupted speech in quiet and with a competing talker. J Acoust Soc Am. 2019 03; 145(3):EL173.
    View in: PubMed
    Score: 0.494
  9. Age effects on perceptual organization of speech: Contributions of glimpsing, phonemic restoration, and speech segregation. J Acoust Soc Am. 2018 07; 144(1):267.
    View in: PubMed
    Score: 0.472
  10. Talker identification: Effects of masking, hearing loss, and age. J Acoust Soc Am. 2018 02; 143(2):1085.
    View in: PubMed
    Score: 0.459
  11. Meta-analysis of quality-of-life improvement after cochlear implantation and associations with speech recognition abilities. Laryngoscope. 2018 04; 128(4):982-990.
    View in: PubMed
    Score: 0.442
  12. Simultaneous and forward masking of vowels and stop consonants: Effects of age, hearing loss, and spectral shaping. J Acoust Soc Am. 2017 02; 141(2):1133.
    View in: PubMed
    Score: 0.428
  13. Self-Assessed Hearing Handicap in Older Adults With Poorer-Than-Predicted Speech Recognition in Noise. J Speech Lang Hear Res. 2017 01 01; 60(1):251-262.
    View in: PubMed
    Score: 0.425
  14. Clinical Implications of Word Recognition Differences in Earphone and Aided Conditions. Otol Neurotol. 2016 12; 37(10):1475-1481.
    View in: PubMed
    Score: 0.423
  15. Glimpsing Speech in the Presence of Nonsimultaneous Amplitude Modulations From a Competing Talker: Effect of Modulation Rate, Age, and Hearing Loss. J Speech Lang Hear Res. 2016 10 01; 59(5):1198-1207.
    View in: PubMed
    Score: 0.418
  16. Sentence intelligibility during segmental interruption and masking by speech-modulated noise: Effects of age and hearing loss. J Acoust Soc Am. 2015 Jun; 137(6):3487-501.
    View in: PubMed
    Score: 0.381
  17. Computational model predictions of cues for concurrent vowel identification. J Assoc Res Otolaryngol. 2014 Oct; 15(5):823-37.
    View in: PubMed
    Score: 0.358
  18. Spatial separation benefit for unaided and aided listening. Ear Hear. 2014 Jan-Feb; 35(1):72-85.
    View in: PubMed
    Score: 0.346
  19. Benefits of auditory training for aided listening by older adults. Am J Audiol. 2013 Dec; 22(2):335-8.
    View in: PubMed
    Score: 0.343
  20. Perceived listening effort for a tonal task with contralateral competing signals. J Acoust Soc Am. 2013 Oct; 134(4):EL352-8.
    View in: PubMed
    Score: 0.340
  21. Age and measurement time-of-day effects on speech recognition in noise. Ear Hear. 2013 May-Jun; 34(3):288-99.
    View in: PubMed
    Score: 0.330
  22. Level-dependent changes in perception of speech envelope cues. J Assoc Res Otolaryngol. 2012 Dec; 13(6):835-52.
    View in: PubMed
    Score: 0.314
  23. Effects of consonant-vowel intensity ratio on loudness of monosyllabic words. J Acoust Soc Am. 2010 Nov; 128(5):3105-13.
    View in: PubMed
    Score: 0.277
  24. Age-related differences in gap detection: effects of task difficulty and cognitive ability. Hear Res. 2010 Jun 01; 264(1-2):21-9.
    View in: PubMed
    Score: 0.257
  25. Age-related differences in the temporal modulation transfer function with pure-tone carriers. J Acoust Soc Am. 2008 Dec; 124(6):3841-9.
    View in: PubMed
    Score: 0.243
  26. Factors affecting the benefits of high-frequency amplification. J Speech Lang Hear Res. 2008 Jun; 51(3):798-813.
    View in: PubMed
    Score: 0.235
  27. Binaural advantage for younger and older adults with normal hearing. J Speech Lang Hear Res. 2008 Apr; 51(2):539-56.
    View in: PubMed
    Score: 0.232
  28. Age-related effects on word recognition: reliance on cognitive control systems with structural declines in speech-responsive cortex. J Assoc Res Otolaryngol. 2008 Jun; 9(2):252-9.
    View in: PubMed
    Score: 0.230
  29. Longitudinal changes in speech recognition in older persons. J Acoust Soc Am. 2008 Jan; 123(1):462-75.
    View in: PubMed
    Score: 0.228
  30. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response. Ear Hear. 2007 Sep; 28(5):682-93.
    View in: PubMed
    Score: 0.223
  31. Estimates of basilar-membrane nonlinearity effects on masking of tones and speech. Ear Hear. 2007 Feb; 28(1):2-17.
    View in: PubMed
    Score: 0.214
  32. Spectral and threshold effects on recognition of speech at higher-than-normal levels. J Acoust Soc Am. 2006 Jul; 120(1):310-20.
    View in: PubMed
    Score: 0.205
  33. Word recognition in noise at higher-than-normal levels: decreases in scores and increases in masking. J Acoust Soc Am. 2005 Aug; 118(2):914-22.
    View in: PubMed
    Score: 0.193
  34. Recognition of filtered words in noise at higher-than-normal levels: decreases in scores with and without increases in masking. J Acoust Soc Am. 2005 Aug; 118(2):923-33.
    View in: PubMed
    Score: 0.193
  35. Recovery from prior stimulation: masking of speech by interrupted noise for younger and older adults with normal hearing. J Acoust Soc Am. 2003 Apr; 113(4 Pt 1):2084-94.
    View in: PubMed
    Score: 0.164
  36. Spectral contributions to the benefit from spatial separation of speech and noise. J Speech Lang Hear Res. 2002 Dec; 45(6):1297-310.
    View in: PubMed
    Score: 0.160
  37. Patient-Related Factors Do Not Predict Use of Computer-Based Auditory Training by New Adult Cochlear Implant Recipients. Otol Neurotol. 2023 02 01; 44(2):e81-e87.
    View in: PubMed
    Score: 0.160
  38. Normative Cochlear Implant Quality of Life (CIQOL)-35 Profile and CIQOL-10 Global Scores for Experienced Cochlear Implant Users from a Multi-Institutional Study. Otol Neurotol. 2022 08 01; 43(7):797-802.
    View in: PubMed
    Score: 0.157
  39. Perception of interrupted speech and text: Listener and modality factors. JASA Express Lett. 2022 06; 2(6):064402.
    View in: PubMed
    Score: 0.155
  40. Evidence for cortical adjustments to perceptual decision criteria during word recognition in noise. Neuroimage. 2022 06; 253:119042.
    View in: PubMed
    Score: 0.152
  41. Use of Auditory Training and Its Influence on Early Cochlear Implant Outcomes in Adults. Otol Neurotol. 2022 02 01; 43(2):e165-e173.
    View in: PubMed
    Score: 0.151
  42. Using Clinical Audiologic Measures to Determine Cochlear Implant Candidacy. Audiol Neurootol. 2022; 27(3):235-242.
    View in: PubMed
    Score: 0.151
  43. Cross-frequency weights in normal and impaired hearing: Stimulus factors, stimulus dimensions, and associations with speech recognition. J Acoust Soc Am. 2021 10; 150(4):2327.
    View in: PubMed
    Score: 0.148
  44. Individual Differences in Speech Recognition Changes After Cochlear Implantation. JAMA Otolaryngol Head Neck Surg. 2021 03 01; 147(3):280-286.
    View in: PubMed
    Score: 0.142
  45. Association of Patient-Related Factors With Adult Cochlear Implant Speech Recognition Outcomes: A Meta-analysis. JAMA Otolaryngol Head Neck Surg. 2020 07 01; 146(7):613-620.
    View in: PubMed
    Score: 0.136
  46. Assessment of Hearing Aid Benefit Using Patient-Reported Outcomes and Audiologic Measures. Audiol Neurootol. 2020; 25(4):215-223.
    View in: PubMed
    Score: 0.133
  47. Factors Influencing Time to Cochlear Implantation. Otol Neurotol. 2020 02; 41(2):173-177.
    View in: PubMed
    Score: 0.132
  48. General Health Quality of Life Instruments Underestimate the Impact of Bilateral Cochlear Implantation. Otol Neurotol. 2019 07; 40(6):745-753.
    View in: PubMed
    Score: 0.126
  49. Beyond the Audiogram: Application of Models of Auditory Fitness for Duty to Assess Communication in the Real World. Ear Hear. 2018 May/Jun; 39(3):434-435.
    View in: PubMed
    Score: 0.117
  50. Factors associated with benefit of active middle ear implants compared to conventional hearing aids. Laryngoscope. 2018 09; 128(9):2133-2138.
    View in: PubMed
    Score: 0.115
  51. Use of Adult Patient Focus Groups to Develop the Initial Item Bank for a Cochlear Implant Quality-of-Life Instrument. JAMA Otolaryngol Head Neck Surg. 2017 10 01; 143(10):975-982.
    View in: PubMed
    Score: 0.112
  52. Cingulo-opercular activity affects incidental memory encoding for speech in noise. Neuroimage. 2017 08 15; 157:381-387.
    View in: PubMed
    Score: 0.110
  53. Syllable-constituent perception by hearing-aid users: Common factors in quiet and noise. J Acoust Soc Am. 2017 04; 141(4):2933.
    View in: PubMed
    Score: 0.108
  54. Age-related and gender-related changes in monaural speech recognition. J Speech Lang Hear Res. 1997 Apr; 40(2):444-52.
    View in: PubMed
    Score: 0.108
  55. Effects of age and hearing loss on concurrent vowel identification. J Acoust Soc Am. 2016 Dec; 140(6):4142.
    View in: PubMed
    Score: 0.106
  56. Effects of Age and Implanted Ear on Speech Recognition in Adults with Unilateral Cochlear Implants. Audiol Neurootol. 2016; 21(4):223-230.
    View in: PubMed
    Score: 0.103
  57. Task-Related Vigilance During Word Recognition in Noise for Older Adults with Hearing Loss. Exp Aging Res. 2016; 42(1):50-66.
    View in: PubMed
    Score: 0.099
  58. Cingulo-Opercular Function During Word Recognition in Noise for Older Adults with Hearing Loss. Exp Aging Res. 2016; 42(1):67-82.
    View in: PubMed
    Score: 0.099
  59. Confidence limits for maximum word-recognition scores. J Speech Hear Res. 1995 Apr; 38(2):490-502.
    View in: PubMed
    Score: 0.094
  60. Masked thresholds and consonant recognition in low-pass maskers for hearing-impaired and normal-hearing listeners. J Acoust Soc Am. 1995 Apr; 97(4):2430-41.
    View in: PubMed
    Score: 0.094
  61. Cortical activity predicts which older adults recognize speech in noise and when. J Neurosci. 2015 Mar 04; 35(9):3929-37.
    View in: PubMed
    Score: 0.094
  62. Speech-perception training for older adults with hearing loss impacts word recognition and effort. Psychophysiology. 2014 Oct; 51(10):1046-57.
    View in: PubMed
    Score: 0.089
  63. The cingulo-opercular network provides word-recognition benefit. J Neurosci. 2013 Nov 27; 33(48):18979-86.
    View in: PubMed
    Score: 0.086
  64. Minimal upward spread of masking: correlations with speech and auditory brainstem response masked thresholds. J Acoust Soc Am. 1993 Jun; 93(6):3422-30.
    View in: PubMed
    Score: 0.083
  65. Pupil size varies with word listening and response selection difficulty in older adults with hearing loss. Psychophysiology. 2013 Jan; 50(1):23-34.
    View in: PubMed
    Score: 0.080
  66. Comparison of frequency selectivity and consonant recognition among hearing-impaired and masked normal-hearing listeners. J Acoust Soc Am. 1992 Apr; 91(4 Pt 1):2110-21.
    View in: PubMed
    Score: 0.077
  67. Inferior frontal sensitivity to common speech sounds is amplified by increasing word intelligibility. Neuropsychologia. 2011 Nov; 49(13):3563-72.
    View in: PubMed
    Score: 0.074
  68. Word intelligibility and age predict visual cortex activity during word listening. Cereb Cortex. 2012 Jun; 22(6):1360-71.
    View in: PubMed
    Score: 0.073
  69. Associations among frequency and temporal resolution and consonant recognition for hearing-impaired listeners. Acta Otolaryngol Suppl. 1990; 469:23-9.
    View in: PubMed
    Score: 0.065
  70. At the heart of the ventral attention system: the right anterior insula. Hum Brain Mapp. 2009 Aug; 30(8):2530-41.
    View in: PubMed
    Score: 0.064
  71. Speech recognition in younger and older adults: a dependency on low-level auditory cortex. J Neurosci. 2009 May 13; 29(19):6078-87.
    View in: PubMed
    Score: 0.063
  72. Auditory filter characteristics and consonant recognition for hearing-impaired listeners. J Acoust Soc Am. 1989 Apr; 85(4):1666-75.
    View in: PubMed
    Score: 0.062
  73. Spatial benefit of bilateral hearing AIDS. Ear Hear. 2009 Apr; 30(2):203-18.
    View in: PubMed
    Score: 0.062
  74. Stop-consonant recognition for normal-hearing listeners and listeners with high-frequency hearing loss. I: The contribution of selected frequency regions. J Acoust Soc Am. 1989 Jan; 85(1):347-54.
    View in: PubMed
    Score: 0.061
  75. Stop-consonant recognition for normal-hearing listeners and listeners with high-frequency hearing loss. II: Articulation index predictions. J Acoust Soc Am. 1989 Jan; 85(1):355-64.
    View in: PubMed
    Score: 0.061
  76. Effects of spectral flattening on vowel identification. J Acoust Soc Am. 1987 Nov; 82(5):1503-11.
    View in: PubMed
    Score: 0.056
  77. Effects of hearing loss on utilization of short-duration spectral cues in stop consonant recognition. J Acoust Soc Am. 1987 Jun; 81(6):1940-7.
    View in: PubMed
    Score: 0.055
  78. Log-linear modeling of consonant confusion data. J Acoust Soc Am. 1986 Feb; 79(2):518-25.
    View in: PubMed
    Score: 0.050
  79. Effects of age and mild hearing loss on speech recognition in noise. J Acoust Soc Am. 1984 Jul; 76(1):87-96.
    View in: PubMed
    Score: 0.045
  80. Benefit of modulated maskers for speech recognition by younger and older adults with normal hearing. J Acoust Soc Am. 2002 Jun; 111(6):2897-907.
    View in: PubMed
    Score: 0.039
  81. A procedure for quantifying the effects of noise on speech recognition. J Speech Hear Disord. 1982 May; 47(2):114-23.
    View in: PubMed
    Score: 0.038
  82. Predicting consonant confusions from acoustic analysis. J Acoust Soc Am. 1981 Jan; 69(1):249-61.
    View in: PubMed
    Score: 0.035
  83. Use of context by young and aged adults with normal hearing. J Acoust Soc Am. 2000 Jan; 107(1):538-46.
    View in: PubMed
    Score: 0.033
  84. Development of the Cochlear Implant Quality of Life Item Bank. Ear Hear. 2019 Jul/Aug; 40(4):1016-1024.
    View in: PubMed
    Score: 0.032
  85. Growth of low-pass masking of pure tones and speech for hearing-impaired and normal-hearing listeners. J Acoust Soc Am. 1995 Dec; 98(6):3113-24.
    View in: PubMed
    Score: 0.025
  86. Frequency selectivity and consonant recognition for hearing-impaired and normal-hearing listeners with equivalent masked thresholds. J Acoust Soc Am. 1995 Feb; 97(2):1165-74.
    View in: PubMed
    Score: 0.023
  87. Comparison of speech recognition-in-noise and subjective communication assessment. Ear Hear. 1985 Nov-Dec; 6(6):291-6.
    View in: PubMed
    Score: 0.012
  88. Speech recognition performance at loudness discomfort level. Scand Audiol. 1981; 10(4):239-46.
    View in: PubMed
    Score: 0.009
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.