Connection

Judy Dubno to Acoustic Stimulation

This is a "connection" page, showing publications Judy Dubno has written about Acoustic Stimulation.
Connection Strength

3.495
  1. Amplitude modulation detection with a short-duration carrier: Effects of a precursor and hearing loss. J Acoust Soc Am. 2018 04; 143(4):2232.
    View in: PubMed
    Score: 0.557
  2. Recognition of filtered words in noise at higher-than-normal levels: decreases in scores with and without increases in masking. J Acoust Soc Am. 2005 Aug; 118(2):923-33.
    View in: PubMed
    Score: 0.231
  3. Sentence perception in noise by hearing-aid users predicted by syllable-constituent perception and the use of context. J Acoust Soc Am. 2020 01; 147(1):273.
    View in: PubMed
    Score: 0.157
  4. Age effects on perceptual organization of speech: Contributions of glimpsing, phonemic restoration, and speech segregation. J Acoust Soc Am. 2018 07; 144(1):267.
    View in: PubMed
    Score: 0.142
  5. Talker identification: Effects of masking, hearing loss, and age. J Acoust Soc Am. 2018 02; 143(2):1085.
    View in: PubMed
    Score: 0.138
  6. Complementary metrics of human auditory nerve function derived from compound action potentials. J Neurophysiol. 2018 03 01; 119(3):1019-1028.
    View in: PubMed
    Score: 0.136
  7. Simultaneous and forward masking of vowels and stop consonants: Effects of age, hearing loss, and spectral shaping. J Acoust Soc Am. 2017 02; 141(2):1133.
    View in: PubMed
    Score: 0.128
  8. Glimpsing Speech in the Presence of Nonsimultaneous Amplitude Modulations From a Competing Talker: Effect of Modulation Rate, Age, and Hearing Loss. J Speech Lang Hear Res. 2016 10 01; 59(5):1198-1207.
    View in: PubMed
    Score: 0.125
  9. Sentence intelligibility during segmental interruption and masking by speech-modulated noise: Effects of age and hearing loss. J Acoust Soc Am. 2015 Jun; 137(6):3487-501.
    View in: PubMed
    Score: 0.114
  10. Auditory-evoked cortical activity: contribution of brain noise, phase locking, and spectral power. J Basic Clin Physiol Pharmacol. 2014 Sep; 25(3):277-84.
    View in: PubMed
    Score: 0.109
  11. Perceived listening effort for a tonal task with contralateral competing signals. J Acoust Soc Am. 2013 Oct; 134(4):EL352-8.
    View in: PubMed
    Score: 0.102
  12. Age and measurement time-of-day effects on speech recognition in noise. Ear Hear. 2013 May-Jun; 34(3):288-99.
    View in: PubMed
    Score: 0.099
  13. Human evoked cortical activity to silent gaps in noise: effects of age, attention, and cortical processing speed. Ear Hear. 2012 May-Jun; 33(3):330-9.
    View in: PubMed
    Score: 0.092
  14. Individual and level-dependent differences in masking for adults with normal and impaired hearing. J Acoust Soc Am. 2012 Apr; 131(4):EL323-8.
    View in: PubMed
    Score: 0.092
  15. Level-dependent changes in detection of temporal gaps in noise markers by adults with normal and impaired hearing. J Acoust Soc Am. 2011 Nov; 130(5):2928-38.
    View in: PubMed
    Score: 0.089
  16. Individual differences in behavioral estimates of cochlear nonlinearities. J Assoc Res Otolaryngol. 2012 Feb; 13(1):91-108.
    View in: PubMed
    Score: 0.089
  17. Word intelligibility and age predict visual cortex activity during word listening. Cereb Cortex. 2012 Jun; 22(6):1360-71.
    View in: PubMed
    Score: 0.088
  18. Effects of consonant-vowel intensity ratio on loudness of monosyllabic words. J Acoust Soc Am. 2010 Nov; 128(5):3105-13.
    View in: PubMed
    Score: 0.083
  19. Age-related differences in gap detection: effects of task difficulty and cognitive ability. Hear Res. 2010 Jun 01; 264(1-2):21-9.
    View in: PubMed
    Score: 0.077
  20. Spatial benefit of bilateral hearing AIDS. Ear Hear. 2009 Apr; 30(2):203-18.
    View in: PubMed
    Score: 0.075
  21. Age-related differences in the temporal modulation transfer function with pure-tone carriers. J Acoust Soc Am. 2008 Dec; 124(6):3841-9.
    View in: PubMed
    Score: 0.073
  22. Age-related differences in sensitivity to small changes in frequency assessed with cortical evoked potentials. Hear Res. 2008 Sep; 243(1-2):47-56.
    View in: PubMed
    Score: 0.070
  23. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response. Ear Hear. 2007 Sep; 28(5):682-93.
    View in: PubMed
    Score: 0.067
  24. Frequency modulation detection: effects of age, psychophysical method, and modulation waveform. J Acoust Soc Am. 2007 Jul; 122(1):467-77.
    View in: PubMed
    Score: 0.066
  25. Electrophysiologic correlates of intensity discrimination in cortical evoked potentials of younger and older adults. Hear Res. 2007 Jun; 228(1-2):58-68.
    View in: PubMed
    Score: 0.064
  26. Evidence for Loss of Activity in Low-Spontaneous-Rate Auditory Nerve Fibers of Older Adults. J Assoc Res Otolaryngol. 2022 04; 23(2):273-284.
    View in: PubMed
    Score: 0.045
  27. Auditory brainstem responses in younger and older adults for broadband noises separated by a silent gap. Hear Res. 2001 Nov; 161(1-2):81-6.
    View in: PubMed
    Score: 0.045
  28. The amplitude-modulation following response in young and aged human subjects. Hear Res. 2001 Mar; 153(1-2):32-42.
    View in: PubMed
    Score: 0.043
  29. Cingulo-opercular adaptive control for younger and older adults during a challenging gap detection task. J Neurosci Res. 2020 04; 98(4):680-691.
    View in: PubMed
    Score: 0.038
  30. Reliability of Measures of N1 Peak Amplitude of the Compound Action Potential in Younger and Older Adults. J Speech Lang Hear Res. 2018 09 19; 61(9):2422-2430.
    View in: PubMed
    Score: 0.036
  31. Cognitive persistence: Development and validation of a novel measure from the Wisconsin Card Sorting Test. Neuropsychologia. 2017 Jul 28; 102:95-108.
    View in: PubMed
    Score: 0.033
  32. Syllable-constituent perception by hearing-aid users: Common factors in quiet and noise. J Acoust Soc Am. 2017 04; 141(4):2933.
    View in: PubMed
    Score: 0.032
  33. Inherent envelope fluctuations in forward maskers: Effects of masker-probe delay for listeners with normal and impaired hearing. J Acoust Soc Am. 2016 Mar; 139(3):1195-203.
    View in: PubMed
    Score: 0.030
  34. Effects of inherent envelope fluctuations in forward maskers for listeners with normal and impaired hearing. J Acoust Soc Am. 2015 Mar; 137(3):1336-43.
    View in: PubMed
    Score: 0.028
  35. Minimal upward spread of masking: correlations with speech and auditory brainstem response masked thresholds. J Acoust Soc Am. 1993 Jun; 93(6):3422-30.
    View in: PubMed
    Score: 0.025
  36. Inferior frontal sensitivity to common speech sounds is amplified by increasing word intelligibility. Neuropsychologia. 2011 Nov; 49(13):3563-72.
    View in: PubMed
    Score: 0.022
  37. Auditory brain stem evoked response characteristics in developing infants. Ann Otol Rhinol Laryngol. 1987 May-Jun; 96(3 Pt 1):291-9.
    View in: PubMed
    Score: 0.016
  38. Auditory brain stem evoked response characteristics in the full-term newborn infant. Ann Otol Rhinol Laryngol. 1987 Mar-Apr; 96(2 Pt 1):142-51.
    View in: PubMed
    Score: 0.016
  39. Comments on the acoustic-reflex response for bone-conducted signals. Acta Otolaryngol. 1978 Jul-Aug; 86(1-2):64-70.
    View in: PubMed
    Score: 0.009
  40. Masking of auditory brainstem responses in young and aged gerbils. Hear Res. 1995 Sep; 89(1-2):1-13.
    View in: PubMed
    Score: 0.007
  41. Detection of tones in band-reject noise. J Speech Hear Res. 1981 Sep; 24(3):336-44.
    View in: PubMed
    Score: 0.003
  42. Acoustic-reflex thresholds for noise stimuli. J Acoust Soc Am. 1980 Sep; 68(3):892-5.
    View in: PubMed
    Score: 0.003
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.