Connection

Yiannis Koutalos to Animals

This is a "connection" page, showing publications Yiannis Koutalos has written about Animals.
Connection Strength

1.125
  1. Relative Contributions of All-Trans and 11-Cis Retinal to Formation of Lipofuscin and A2E Accumulating in Mouse Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci. 2021 02 01; 62(2):1.
    View in: PubMed
    Score: 0.054
  2. Photooxidation mediated by 11-cis and all-trans retinal in single isolated mouse rod photoreceptors. Photochem Photobiol Sci. 2020 Oct 14; 19(10):1300-1307.
    View in: PubMed
    Score: 0.053
  3. Interphotoreceptor retinoid-binding protein removes all-trans-retinol and retinal from rod outer segments, preventing lipofuscin precursor formation. J Biol Chem. 2017 11 24; 292(47):19356-19365.
    View in: PubMed
    Score: 0.043
  4. RPE65 and the Accumulation of Retinyl Esters in Mouse Retinal Pigment Epithelium. Photochem Photobiol. 2017 05; 93(3):844-848.
    View in: PubMed
    Score: 0.042
  5. All-trans retinal levels and formation of lipofuscin precursors after bleaching in rod photoreceptors from wild type and Abca4-/- mice. Exp Eye Res. 2017 02; 155:121-127.
    View in: PubMed
    Score: 0.041
  6. Kinetics of rhodopsin's chromophore monitored in a single photoreceptor. Methods Mol Biol. 2015; 1271:327-43.
    View in: PubMed
    Score: 0.036
  7. The 11-cis Retinal Origins of Lipofuscin in the Retina. Prog Mol Biol Transl Sci. 2015; 134:e1-12.
    View in: PubMed
    Score: 0.036
  8. Mitochondria contribute to NADPH generation in mouse rod photoreceptors. J Biol Chem. 2014 Jan 17; 289(3):1519-28.
    View in: PubMed
    Score: 0.033
  9. Will the rod bend or break? Analyzing the structural resilience of cellular organelles. Biophys J. 2013 Jan 22; 104(2):284-5.
    View in: PubMed
    Score: 0.031
  10. Reduction of all-trans-retinal in vertebrate rod photoreceptors requires the combined action of RDH8 and RDH12. J Biol Chem. 2012 Jul 13; 287(29):24662-70.
    View in: PubMed
    Score: 0.030
  11. Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal. J Biol Chem. 2012 Jun 22; 287(26):22276-86.
    View in: PubMed
    Score: 0.030
  12. Lipofuscin and A2E accumulate with age in the retinal pigment epithelium of Nrl-/- mice. Photochem Photobiol. 2012 Nov-Dec; 88(6):1373-7.
    View in: PubMed
    Score: 0.029
  13. All-trans retinal mediates light-induced oxidation in single living rod photoreceptors. Photochem Photobiol. 2012 Nov-Dec; 88(6):1356-61.
    View in: PubMed
    Score: 0.029
  14. Preparation of living isolated vertebrate photoreceptor cells for fluorescence imaging. J Vis Exp. 2011 Jun 22; (52).
    View in: PubMed
    Score: 0.028
  15. Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation. Invest Ophthalmol Vis Sci. 2011 Jun 01; 52(6):3483-91.
    View in: PubMed
    Score: 0.028
  16. Rapid formation of all-trans retinol after bleaching in frog and mouse rod photoreceptor outer segments. Photochem Photobiol Sci. 2010 Nov; 9(11):1475-9.
    View in: PubMed
    Score: 0.026
  17. 2-Hydroxypropyl-beta-cyclodextrin removes all-trans retinol from frog rod photoreceptors in a concentration-dependent manner. J Ocul Pharmacol Ther. 2010 Jun; 26(3):245-8.
    View in: PubMed
    Score: 0.026
  18. Measurement of the mobility of all-trans-retinol with two-photon fluorescence recovery after photobleaching. Methods Mol Biol. 2010; 652:115-27.
    View in: PubMed
    Score: 0.025
  19. Microfluorometric measurement of the formation of all-trans-retinol in the outer segments of single isolated vertebrate photoreceptors. Methods Mol Biol. 2010; 652:129-47.
    View in: PubMed
    Score: 0.025
  20. Formation of all-trans retinol after visual pigment bleaching in mouse photoreceptors. Invest Ophthalmol Vis Sci. 2009 Aug; 50(8):3589-95.
    View in: PubMed
    Score: 0.024
  21. Two-photon microscopy: shedding light on the chemistry of vision. Biochemistry. 2007 Aug 28; 46(34):9674-84.
    View in: PubMed
    Score: 0.021
  22. Interphotoreceptor retinoid-binding protein is the physiologically relevant carrier that removes retinol from rod photoreceptor outer segments. Biochemistry. 2007 Jul 24; 46(29):8669-79.
    View in: PubMed
    Score: 0.021
  23. Longitudinal diffusion of a polar tracer in the outer segments of rod photoreceptors from different species. Photochem Photobiol. 2006 Nov-Dec; 82(6):1447-51.
    View in: PubMed
    Score: 0.020
  24. All-trans retinol in rod photoreceptor outer segments moves unrestrictedly by passive diffusion. Biophys J. 2006 Dec 15; 91(12):4678-89.
    View in: PubMed
    Score: 0.020
  25. Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors. Biophys J. 2005 Mar; 88(3):2278-87.
    View in: PubMed
    Score: 0.018
  26. Free magnesium concentration in salamander photoreceptor outer segments. J Physiol. 2003 Nov 15; 553(Pt 1):125-35.
    View in: PubMed
    Score: 0.016
  27. Regulation of the visual cycle: retinol dehydrogenase and retinol fluorescence measurements in vertebrate retina. Adv Exp Med Biol. 2003; 533:353-60.
    View in: PubMed
    Score: 0.016
  28. Calcium diffusion coefficient in rod photoreceptor outer segments. Biophys J. 2002 Feb; 82(2):728-39.
    View in: PubMed
    Score: 0.015
  29. Calcium and phototransduction. Adv Exp Med Biol. 2002; 514:1-20.
    View in: PubMed
    Score: 0.014
  30. Evidence for ceramide induced cytotoxicity in retinal ganglion cells. Exp Eye Res. 2021 10; 211:108762.
    View in: PubMed
    Score: 0.014
  31. Vertebrate photoreceptors. Prog Retin Eye Res. 2001 Jan; 20(1):49-94.
    View in: PubMed
    Score: 0.014
  32. Adaptation in vertebrate photoreceptors. Physiol Rev. 2001 Jan; 81(1):117-151.
    View in: PubMed
    Score: 0.014
  33. Characterization of guanylyl cyclase and phosphodiesterase activities in single rod outer segments. Methods Enzymol. 2000; 315:742-52.
    View in: PubMed
    Score: 0.013
  34. Intracellular spreading of second messengers. J Physiol. 1999 Sep 15; 519 Pt 3:629.
    View in: PubMed
    Score: 0.012
  35. Cyclic AMP diffusion coefficient in frog olfactory cilia. Biophys J. 1999 May; 76(5):2861-7.
    View in: PubMed
    Score: 0.012
  36. Hepatic stellate cells retain retinoid-laden lipid droplets after cellular transdifferentiation into activated myofibroblasts. Am J Physiol Gastrointest Liver Physiol. 2018 11 01; 315(5):G713-G721.
    View in: PubMed
    Score: 0.011
  37. Bis(monoacylglycero)phosphate lipids in the retinal pigment epithelium implicate lysosomal/endosomal dysfunction in a model of Stargardt disease and human retinas. Sci Rep. 2017 12 11; 7(1):17352.
    View in: PubMed
    Score: 0.011
  38. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods. J Gen Physiol. 2016 07; 148(1):1-11.
    View in: PubMed
    Score: 0.010
  39. Regulation of sensitivity in vertebrate rod photoreceptors by calcium. Trends Neurosci. 1996 Feb; 19(2):73-81.
    View in: PubMed
    Score: 0.010
  40. Diffusion coefficient of the cyclic GMP analog 8-(fluoresceinyl)thioguanosine 3',5' cyclic monophosphate in the salamander rod outer segment. Biophys J. 1995 Nov; 69(5):2163-7.
    View in: PubMed
    Score: 0.009
  41. Characterization of guanylate cyclase activity in single retinal rod outer segments. J Gen Physiol. 1995 Nov; 106(5):863-90.
    View in: PubMed
    Score: 0.009
  42. The cGMP-phosphodiesterase and its contribution to sensitivity regulation in retinal rods. J Gen Physiol. 1995 Nov; 106(5):891-921.
    View in: PubMed
    Score: 0.009
  43. A2E and lipofuscin distributions in macaque retinal pigment epithelium are similar to human. Photochem Photobiol Sci. 2015 Oct; 14(10):1888-95.
    View in: PubMed
    Score: 0.009
  44. A2E and Lipofuscin. Prog Mol Biol Transl Sci. 2015; 134:449-63.
    View in: PubMed
    Score: 0.009
  45. Lack of Acid Sphingomyelinase Induces Age-Related Retinal Degeneration. PLoS One. 2015; 10(7):e0133032.
    View in: PubMed
    Score: 0.009
  46. Cyclic GMP diffusion coefficient in rod photoreceptor outer segments. Biophys J. 1995 Jan; 68(1):373-82.
    View in: PubMed
    Score: 0.009
  47. High resolution MALDI imaging mass spectrometry of retinal tissue lipids. J Am Soc Mass Spectrom. 2014 Aug; 25(8):1394-403.
    View in: PubMed
    Score: 0.009
  48. The utilization of fluorescence to identify the components of lipofuscin by imaging mass spectrometry. Proteomics. 2014 Apr; 14(7-8):936-44.
    View in: PubMed
    Score: 0.008
  49. Similar molecules spatially correlate with lipofuscin and N-retinylidene-N-retinylethanolamine in the mouse but not in the human retinal pigment epithelium. Arch Biochem Biophys. 2013 Nov 15; 539(2):196-202.
    View in: PubMed
    Score: 0.008
  50. A rich complexity emerges in phototransduction. Curr Opin Neurobiol. 1993 Aug; 3(4):513-9.
    View in: PubMed
    Score: 0.008
  51. New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res. 2013 Jan; 32:48-63.
    View in: PubMed
    Score: 0.008
  52. Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods. J Gen Physiol. 2012 Jun; 139(6):493-505.
    View in: PubMed
    Score: 0.007
  53. High-pH form of bovine rhodopsin. Biophys J. 1992 Jan; 61(1):272-5.
    View in: PubMed
    Score: 0.007
  54. Spatial localization of A2E in the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2011 Jun 06; 52(7):3926-33.
    View in: PubMed
    Score: 0.007
  55. Mass spectrometry provides accurate and sensitive quantitation of A2E. Photochem Photobiol Sci. 2010 Nov; 9(11):1513-9.
    View in: PubMed
    Score: 0.007
  56. Octopus photoreceptor membranes. Surface charge density and pK of the Schiff base of the pigments. Biophys J. 1990 Aug; 58(2):493-501.
    View in: PubMed
    Score: 0.007
  57. Regeneration of bovine and octopus opsins in situ with natural and artificial retinals. Biochemistry. 1989 Mar 21; 28(6):2732-9.
    View in: PubMed
    Score: 0.006
  58. Recent progress in vertebrate photoreception. Photochem Photobiol. 1986 Dec; 44(6):809-17.
    View in: PubMed
    Score: 0.005
  59. Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology. J Gen Physiol. 2006 Aug; 128(2):153-69.
    View in: PubMed
    Score: 0.005
  60. Physiological and microfluorometric studies of reduction and clearance of retinal in bleached rod photoreceptors. J Gen Physiol. 2004 Oct; 124(4):429-43.
    View in: PubMed
    Score: 0.004
  61. A resonance Raman study of the C=C stretch modes in bovine and octopus visual pigments with isotopically labeled retinal chromophores. Photochem Photobiol. 1997 Dec; 66(6):747-54.
    View in: PubMed
    Score: 0.003
  62. A resonance Raman study of the C=N configurations of octopus rhodopsin, bathorhodopsin, and isorhodopsin. Biochemistry. 1996 Jul 02; 35(26):8504-10.
    View in: PubMed
    Score: 0.002
  63. Ca2+ modulation of the cGMP-gated channel of bullfrog retinal rod photoreceptors. J Physiol. 1995 Apr 01; 484 ( Pt 1):69-76.
    View in: PubMed
    Score: 0.002
  64. A resonance Raman study of octopus bathorhodopsin with deuterium labeled retinal chromophores. Photochem Photobiol. 1991 Dec; 54(6):1001-7.
    View in: PubMed
    Score: 0.002
  65. Resonance Raman studies of the HOOP modes in octopus bathorhodopsin with deuterium-labeled retinal chromophores. Biochemistry. 1991 May 07; 30(18):4495-502.
    View in: PubMed
    Score: 0.002
  66. Phosphorus-31 nuclear magnetic resonance spectroscopy of toad retina. Biophys J. 1989 Sep; 56(3):447-52.
    View in: PubMed
    Score: 0.002
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.