Connection

U. Schoepf to Predictive Value of Tests

This is a "connection" page, showing publications U. Schoepf has written about Predictive Value of Tests.
Connection Strength

5.254
  1. Predictive Value of Cardiac CTA, Cardiac MRI, and Transthoracic Echocardiography for Cardioembolic Stroke Recurrence. AJR Am J Roentgenol. 2021 08; 217(2):336-346.
    View in: PubMed
    Score: 0.139
  2. Influence of coronary stenosis location on diagnostic performance of machine learning-based fractional flow reserve from CT angiography. J Cardiovasc Comput Tomogr. 2021 Nov-Dec; 15(6):492-498.
    View in: PubMed
    Score: 0.139
  3. Machine Learning and Coronary Artery Calcium Scoring. Curr Cardiol Rep. 2020 07 09; 22(9):90.
    View in: PubMed
    Score: 0.130
  4. Evaluation of a Deep Learning-Based Automated CT Coronary Artery Calcium Scoring Algorithm. JACC Cardiovasc Imaging. 2020 02; 13(2 Pt 1):524-526.
    View in: PubMed
    Score: 0.125
  5. Myocardial extracellular volume fraction to differentiate healthy from cardiomyopathic myocardium using dual-source dual-energy CT. J Cardiovasc Comput Tomogr. 2020 Mar - Apr; 14(2):162-167.
    View in: PubMed
    Score: 0.123
  6. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry. JACC Cardiovasc Imaging. 2020 03; 13(3):760-770.
    View in: PubMed
    Score: 0.122
  7. Prognostic value of CT myocardial perfusion imaging and CT-derived fractional flow reserve for major adverse cardiac events in patients with coronary artery disease. J Cardiovasc Comput Tomogr. 2019 May - Jun; 13(3):26-33.
    View in: PubMed
    Score: 0.118
  8. Feasibility of extracellular volume quantification using dual-energy CT. J Cardiovasc Comput Tomogr. 2019 Jan - Feb; 13(1):81-84.
    View in: PubMed
    Score: 0.116
  9. Coronary CT Angiography-derived Fractional Flow Reserve: Machine Learning Algorithm versus Computational Fluid Dynamics Modeling. Radiology. 2018 Jul; 288(1):64-72.
    View in: PubMed
    Score: 0.112
  10. Response to Letter Regarding Article "Prognostic value of CT-derived left atrial and left ventricular measures in patients with acute chest pain". Eur J Radiol. 2018 04; 101:192.
    View in: PubMed
    Score: 0.110
  11. FFR-Derived From?Coronary CT?Angiography Using Workstation-Based Approaches. JACC Cardiovasc Imaging. 2017 04; 10(4):497-498.
    View in: PubMed
    Score: 0.104
  12. Cardiac CTA for Evaluation of Prosthetic?Valve?Dysfunction. JACC Cardiovasc Imaging. 2017 01; 10(1):91-93.
    View in: PubMed
    Score: 0.101
  13. Correlation and predictive value of aortic root calcification markers with coronary artery calcification and obstructive coronary artery disease. Radiol Med. 2017 Feb; 122(2):113-120.
    View in: PubMed
    Score: 0.101
  14. Prognostic implications of coronary CT angiography-derived quantitative markers for the prediction of major adverse cardiac events. J Cardiovasc Comput Tomogr. 2016 Nov - Dec; 10(6):458-465.
    View in: PubMed
    Score: 0.099
  15. Coronary CT angiography-derived quantitative markers for predicting in-stent restenosis. J Cardiovasc Comput Tomogr. 2016 Sep-Oct; 10(5):377-83.
    View in: PubMed
    Score: 0.099
  16. Dynamic CT myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension: Insights from a multicenter registry. J Cardiovasc Comput Tomogr. 2016 Jul-Aug; 10(4):301-8.
    View in: PubMed
    Score: 0.098
  17. Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis. J Cardiovasc Comput Tomogr. 2016 May-Jun; 10(3):199-206.
    View in: PubMed
    Score: 0.097
  18. Effect of reduced x-ray tube voltage, low iodine concentration contrast medium, and sinogram-affirmed iterative reconstruction on image quality and radiation dose at coronary CT angiography: results of the prospective multicenter REALISE trial. J Cardiovasc Comput Tomogr. 2015 May-Jun; 9(3):215-24.
    View in: PubMed
    Score: 0.089
  19. Semiautomated quantification of aortic annulus dimensions on cardiac CT for TAVR. JACC Cardiovasc Imaging. 2014 Mar; 7(3):320-2.
    View in: PubMed
    Score: 0.084
  20. Contemporary cardiovascular imaging methods for the assessment of at-risk myocardium. J Am Heart Assoc. 2013 Dec 23; 3(1):e000473.
    View in: PubMed
    Score: 0.083
  21. Iterative reconstruction to preserve image quality and diagnostic accuracy at reduced radiation dose in coronary CT angiography: an intraindividual comparison. JACC Cardiovasc Imaging. 2013 Dec; 6(12):1239-49.
    View in: PubMed
    Score: 0.082
  22. Conformational pulsatile changes of the aortic annulus: impact on prosthesis sizing by computed tomography for transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2012 Sep; 5(9):984-94.
    View in: PubMed
    Score: 0.076
  23. CT detection of myocardial blood volume deficits: dual-energy CT compared with single-energy CT spectra. J Cardiovasc Comput Tomogr. 2011 Nov-Dec; 5(6):421-9.
    View in: PubMed
    Score: 0.071
  24. High-temporal resolution dual-energy computed tomography of the heart using a novel hybrid image reconstruction algorithm: initial experience. J Comput Assist Tomogr. 2011 Jan-Feb; 35(1):119-25.
    View in: PubMed
    Score: 0.067
  25. Integrative computed tomographic imaging of cardiac structure, function, perfusion, and viability. Cardiol Rev. 2010 Sep-Oct; 18(5):219-29.
    View in: PubMed
    Score: 0.066
  26. Noncalcified atherosclerotic plaque burden at coronary CT angiography: a better predictor of ischemia at stress myocardial perfusion imaging than calcium score and stenosis severity. AJR Am J Roentgenol. 2009 Aug; 193(2):410-8.
    View in: PubMed
    Score: 0.061
  27. Coronary CT angiography: applications. Radiol Clin North Am. 2009 Jan; 47(1):91-107.
    View in: PubMed
    Score: 0.059
  28. Pulmonary embolism: computer-aided detection at multidetector row spiral computed tomography. J Thorac Imaging. 2007 Nov; 22(4):319-23.
    View in: PubMed
    Score: 0.054
  29. Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology. 2007 Jul; 244(1):112-20.
    View in: PubMed
    Score: 0.053
  30. Clinical validity of a negative computed tomography scan in patients with suspected pulmonary embolism: a systematic review. JAMA. 2005 Apr 27; 293(16):2012-7.
    View in: PubMed
    Score: 0.045
  31. Diagnosing pulmonary embolism: time to rewrite the textbooks. Int J Cardiovasc Imaging. 2005 Feb; 21(1):155-63.
    View in: PubMed
    Score: 0.045
  32. Spiral computed tomography for acute pulmonary embolism. Circulation. 2004 May 11; 109(18):2160-7.
    View in: PubMed
    Score: 0.043
  33. CT angiography for diagnosis of pulmonary embolism: state of the art. Radiology. 2004 Feb; 230(2):329-37.
    View in: PubMed
    Score: 0.042
  34. Diabetes, Atherosclerosis, and Stenosis by AI. Diabetes Care. 2023 02 01; 46(2):416-424.
    View in: PubMed
    Score: 0.039
  35. Biventricular strain assessment indicates progressive impairment of myocardial contractility in phenotypically negative patients with Fabry's disease. Eur J Radiol. 2022 Oct; 155:110471.
    View in: PubMed
    Score: 0.038
  36. Machine Learning for the Prevalence and Severity of Coronary Artery Calcification in Nondialysis Chronic Kidney Disease Patients: A Chinese Large Cohort Study. J Thorac Imaging. 2022 Nov 01; 37(6):401-408.
    View in: PubMed
    Score: 0.037
  37. Automated Dual-energy Computed Tomography-based Extracellular Volume Estimation for Myocardial Characterization in Patients With Ischemic and Nonischemic Cardiomyopathy. J Thorac Imaging. 2022 Sep 01; 37(5):307-314.
    View in: PubMed
    Score: 0.037
  38. Coronary CTA With AI-QCT Interpretation: Comparison With Myocardial Perfusion Imaging for Detection of Obstructive Stenosis Using Invasive Angiography as Reference Standard. AJR Am J Roentgenol. 2022 09; 219(3):407-419.
    View in: PubMed
    Score: 0.037
  39. Impact of machine-learning-based coronary computed tomography angiography-derived fractional flow reserve on decision-making in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Radiol. 2022 Sep; 32(9):6008-6016.
    View in: PubMed
    Score: 0.037
  40. Time-dependent cardiac structural and functional changes after kidney transplantation: a multi-parametric cardiac magnetic resonance study. Eur Radiol. 2022 Aug; 32(8):5265-5275.
    View in: PubMed
    Score: 0.037
  41. Functional CAD-RADS using FFRCT on therapeutic management and prognosis in patients with coronary artery disease. Eur Radiol. 2022 Aug; 32(8):5210-5221.
    View in: PubMed
    Score: 0.037
  42. [Morphological and functional diagnostics of coronary artery disease by computed tomography]. Herz. 2023 Feb; 48(1):39-47.
    View in: PubMed
    Score: 0.037
  43. One-year outcomes of CCTA alone versus machine learning-based FFRCT for coronary artery disease: a single-center, prospective study. Eur Radiol. 2022 Aug; 32(8):5179-5188.
    View in: PubMed
    Score: 0.036
  44. AI Evaluation of Stenosis on Coronary CTA, Comparison With Quantitative Coronary Angiography and Fractional Flow Reserve: A CREDENCE Trial Substudy. JACC Cardiovasc Imaging. 2023 02; 16(2):193-205.
    View in: PubMed
    Score: 0.036
  45. The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiography. Clin Imaging. 2022 Apr; 84:149-158.
    View in: PubMed
    Score: 0.036
  46. Additive value of epicardial adipose tissue quantification to coronary CT angiography-derived plaque characterization and CT fractional flow reserve for the prediction of lesion-specific ischemia. Eur Radiol. 2022 Jun; 32(6):4243-4252.
    View in: PubMed
    Score: 0.036
  47. Prognostic value of epicardial adipose tissue volume in combination with coronary plaque and flow assessment for the prediction of major adverse cardiac events. Eur J Radiol. 2022 Mar; 148:110157.
    View in: PubMed
    Score: 0.036
  48. Deep learning model to quantify left atrium volume on routine non-contrast chest CT and predict adverse outcomes. J Cardiovasc Comput Tomogr. 2022 May-Jun; 16(3):245-253.
    View in: PubMed
    Score: 0.036
  49. Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence. Open Heart. 2021 11; 8(2).
    View in: PubMed
    Score: 0.036
  50. Utility of Functional and Volumetric Left Atrial Parameters Derived From Preprocedural Cardiac CTA in Predicting Mortality After Transcatheter Aortic Valve Replacement. AJR Am J Roentgenol. 2022 03; 218(3):444-452.
    View in: PubMed
    Score: 0.036
  51. CarDiac magnEtic Resonance for prophylactic Implantable-cardioVerter defibrillAtor ThErapy in Non-Ischaemic dilated CardioMyopathy: an international Registry. Europace. 2021 07 18; 23(7):1072-1083.
    View in: PubMed
    Score: 0.035
  52. Non-invasive fractional flow reserve (FFRCT) in the evaluation of acute chest pain - Concepts and first experiences. Eur J Radiol. 2021 May; 138:109633.
    View in: PubMed
    Score: 0.034
  53. [Diagnosis of lung embolism with multislice spiral CT]. Radiologe. 2001 Mar; 41(3):248-55.
    View in: PubMed
    Score: 0.034
  54. Prognostic Value of Coronary Computed Tomography Angiography-derived Morphologic and Quantitative Plaque Markers Using Semiautomated Plaque Software. J Thorac Imaging. 2021 Mar 01; 36(2):108-115.
    View in: PubMed
    Score: 0.034
  55. Serial coronary CT angiography-derived fractional flow reserve and plaque progression can predict long-term outcomes of coronary artery disease. Eur Radiol. 2021 Sep; 31(9):7110-7120.
    View in: PubMed
    Score: 0.034
  56. Measurement accuracy of prototype non-contrast, compressed sensing-based, respiratory motion-resolved whole heart cardiovascular magnetic resonance angiography for the assessment of thoracic aortic dilatation: comparison with computed tomography angiography. J Cardiovasc Magn Reson. 2021 02 08; 23(1):7.
    View in: PubMed
    Score: 0.034
  57. Coronary plaque assessment of Vasodilative capacity by CT angiography effectively estimates fractional flow reserve. Int J Cardiol. 2021 05 15; 331:307-315.
    View in: PubMed
    Score: 0.034
  58. Monitoring of anthracycline-induced myocardial injury using serial cardiac magnetic resonance: An animal study. Int J Cardiol. 2021 04 01; 328:111-116.
    View in: PubMed
    Score: 0.034
  59. Cardiac magnetic resonance imaging features prognostic information in patients with suspected myocardial infarction with non-obstructed coronary arteries. Int J Cardiol. 2021 03 15; 327:223-230.
    View in: PubMed
    Score: 0.034
  60. Improved long-term prognostic value of coronary CT angiography-derived plaque measures and clinical parameters on adverse cardiac outcome using machine learning. Eur Radiol. 2021 Jan; 31(1):486-493.
    View in: PubMed
    Score: 0.033
  61. Myocardial Mass Corrected CMR Feature Tracking-Based Strain Ratios are Different in Pathologies With Increased Myocardial Mass. Acad Radiol. 2022 04; 29 Suppl 4:S40-S48.
    View in: PubMed
    Score: 0.033
  62. Ischemia and outcome prediction by cardiac CT based machine learning. Int J Cardiovasc Imaging. 2020 Dec; 36(12):2429-2439.
    View in: PubMed
    Score: 0.033
  63. A fully automated software platform for structural mitral valve analysis. Eur Radiol. 2020 Dec; 30(12):6528-6536.
    View in: PubMed
    Score: 0.033
  64. Impact of machine learning-based coronary computed tomography angiography fractional flow reserve on treatment decisions and clinical outcomes in patients with suspected coronary artery disease. Eur Radiol. 2020 Nov; 30(11):5841-5851.
    View in: PubMed
    Score: 0.032
  65. Cardiac Computed Tomography for Atrial Fibrillation Patients Undergoing Ablation: Implications for the Prediction of Early Recurrence. J Thorac Imaging. 2020 May; 35(3):186-192.
    View in: PubMed
    Score: 0.032
  66. Low-kV coronary artery calcium scoring with tin filtration using a kV-independent reconstruction algorithm. J Cardiovasc Comput Tomogr. 2020 May - Jun; 14(3):246-250.
    View in: PubMed
    Score: 0.031
  67. CT FFR for Ischemia-Specific CAD With?a?New Computational Fluid Dynamics Algorithm: A Chinese Multicenter Study. JACC Cardiovasc Imaging. 2020 04; 13(4):980-990.
    View in: PubMed
    Score: 0.031
  68. Assessing the value of coronary artery computed tomography as the first-line anatomical test for stable patients with indications for invasive angiography due to suspected coronary artery disease. Initial cost analysis in the CAT-CAD randomized trial. J Cardiovasc Comput Tomogr. 2020 Jan - Feb; 14(1):75-79.
    View in: PubMed
    Score: 0.031
  69. Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: meta-analysis of individual patient data. BMJ. 2019 06 12; 365:l1945.
    View in: PubMed
    Score: 0.030
  70. Effect of Tube Voltage on Diagnostic Performance of Fractional Flow Reserve Derived From Coronary CT Angiography With Machine Learning: Results From the MACHINE Registry. AJR Am J Roentgenol. 2019 08; 213(2):325-331.
    View in: PubMed
    Score: 0.030
  71. Machine Learning Using CT-FFR Predicts Proximal Atherosclerotic Plaque Formation Associated With LAD Myocardial Bridging. JACC Cardiovasc Imaging. 2019 08; 12(8 Pt 1):1591-1593.
    View in: PubMed
    Score: 0.030
  72. Progression of coronary atherosclerotic plaque burden and relationship with adverse cardiovascular event in asymptomatic diabetic patients. BMC Cardiovasc Disord. 2019 02 11; 19(1):39.
    View in: PubMed
    Score: 0.030
  73. Comparison of the Diagnostic Performance of Coronary Computed Tomography Angiography-Derived Fractional Flow Reserve in Patients With Versus Without Diabetes Mellitus (from the MACHINE Consortium). Am J Cardiol. 2019 02 15; 123(4):537-543.
    View in: PubMed
    Score: 0.029
  74. Fractional flow reserve derived from CCTA may have a prognostic role in myocardial bridging. Eur Radiol. 2019 Jun; 29(6):3017-3026.
    View in: PubMed
    Score: 0.029
  75. Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFRML): Impact of iterative and filtered back projection reconstruction techniques. J Cardiovasc Comput Tomogr. 2019 Nov - Dec; 13(6):331-335.
    View in: PubMed
    Score: 0.029
  76. Low CT temporal sampling rates result in a substantial underestimation of myocardial blood flow measurements. Int J Cardiovasc Imaging. 2019 Mar; 35(3):539-547.
    View in: PubMed
    Score: 0.029
  77. The value of Coronary Artery computed Tomography as the first-line anatomical test for stable patients with indications for invasive angiography due to suspected Coronary Artery Disease: CAT-CAD randomized trial. J Cardiovasc Comput Tomogr. 2018 Nov - Dec; 12(6):472-479.
    View in: PubMed
    Score: 0.029
  78. Diagnostic yield and accuracy of coronary CT angiography after abnormal nuclear myocardial perfusion imaging. Sci Rep. 2018 06 15; 8(1):9228.
    View in: PubMed
    Score: 0.028
  79. Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve: Result From the MACHINE Consortium. Circ Cardiovasc Imaging. 2018 06; 11(6):e007217.
    View in: PubMed
    Score: 0.028
  80. Predictive value of coronary computed tomography angiography in asymptomatic individuals with diabetes mellitus: Systematic review and meta-analysis. J Cardiovasc Comput Tomogr. 2018 Jul - Aug; 12(4):320-328.
    View in: PubMed
    Score: 0.028
  81. Quantitative inversion time prescription for myocardial late gadolinium enhancement using T1-mapping-based synthetic inversion recovery imaging: reducing subjectivity in the estimation of inversion time. Int J Cardiovasc Imaging. 2018 Jun; 34(6):921-929.
    View in: PubMed
    Score: 0.027
  82. Prognostic value of coronary atherosclerosis progression evaluated by coronary CT angiography in patients with stable angina. Eur Radiol. 2018 Mar; 28(3):1066-1076.
    View in: PubMed
    Score: 0.027
  83. What is the optimal anatomic location for coronary artery pressure measurement at CT-derived FFR? J Cardiovasc Comput Tomogr. 2017 Sep - Oct; 11(5):397-403.
    View in: PubMed
    Score: 0.027
  84. Iterative beam-hardening correction with advanced modeled iterative reconstruction in low voltage CT coronary calcium scoring with tin filtration: Impact on coronary artery calcium quantification and image quality. J Cardiovasc Comput Tomogr. 2017 Sep - Oct; 11(5):354-359.
    View in: PubMed
    Score: 0.027
  85. CT angiography to evaluate coronary artery disease and revascularization requirement before trans-catheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2017 Sep - Oct; 11(5):338-346.
    View in: PubMed
    Score: 0.026
  86. Predictive value of perfusion defects on dual energy CTA in the absence of thromboembolic clots. J Cardiovasc Comput Tomogr. 2017 May - Jun; 11(3):183-187.
    View in: PubMed
    Score: 0.026
  87. Coronary artery calcium in breast cancer survivors after radiation therapy. Int J Cardiovasc Imaging. 2017 Sep; 33(9):1425-1431.
    View in: PubMed
    Score: 0.026
  88. Analysis of myocardial perfusion parameters in an ex-vivo porcine heart model using third generation dual-source CT. J Cardiovasc Comput Tomogr. 2017 Mar - Apr; 11(2):141-147.
    View in: PubMed
    Score: 0.026
  89. Accuracy of Noncontrast Quiescent-Interval Single-Shot Lower Extremity MR Angiography Versus CT?Angiography for Diagnosis of Peripheral Artery Disease: Comparison With Digital Subtraction Angiography. JACC Cardiovasc Imaging. 2017 10; 10(10 Pt A):1116-1124.
    View in: PubMed
    Score: 0.026
  90. Global quantification of left ventricular myocardial perfusion at dynamic CT imaging: Prognostic value. J Cardiovasc Comput Tomogr. 2017 Jan - Feb; 11(1):16-24.
    View in: PubMed
    Score: 0.026
  91. Prognostic value of CT-derived left atrial and left ventricular measures in patients with acute chest pain. Eur J Radiol. 2017 Jan; 86:163-168.
    View in: PubMed
    Score: 0.025
  92. Fractional flow reserve derived by coronary computed tomography angiography : A?sophisticated analysis method for detecting hemodynamically significant coronary stenosis. Herz. 2017 Sep; 42(6):604-606.
    View in: PubMed
    Score: 0.025
  93. Coronary Artery Disease - Reporting and?Data?System (CAD-RADS): An Expert Consensus Document of SCCT, ACR and NASCI: Endorsed by the ACC. JACC Cardiovasc Imaging. 2016 09; 9(9):1099-1113.
    View in: PubMed
    Score: 0.025
  94. CAD-RADS(TM) Coronary Artery Disease - Reporting and Data System. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr. 2016 Jul-Aug; 10(4):269-81.
    View in: PubMed
    Score: 0.025
  95. Comparison of quantitative stenosis characteristics at routine coronary computed tomography angiography with invasive fractional flow reserve for assessing lesion-specific ischemia. J Cardiovasc Comput Tomogr. 2015 Nov-Dec; 9(6):546-52.
    View in: PubMed
    Score: 0.023
  96. Mammographic detection of breast arterial calcification as an independent predictor of coronary atherosclerotic disease in a single ethnic cohort of African American women. Atherosclerosis. 2015 Sep; 242(1):218-21.
    View in: PubMed
    Score: 0.023
  97. A novel approach for fractional flow reserve derivation from coronary computed tomographic angiography. Coron Artery Dis. 2015 May; 26(3):279-80.
    View in: PubMed
    Score: 0.023
  98. Predictive Value of Computed Tomography in Acute Pulmonary Embolism: Systematic Review and Meta-analysis. Am J Med. 2015 Jul; 128(7):747-59.e2.
    View in: PubMed
    Score: 0.022
  99. Correlation of cardiac magnetic resonance imaging and histopathology in eosinophilic endomyocarditis. Circ Cardiovasc Imaging. 2015 Jan; 8(1).
    View in: PubMed
    Score: 0.022
  100. Coronary CT angiography-derived fractional flow reserve correlated with invasive fractional flow reserve measurements--initial experience with a novel physician-driven algorithm. Eur Radiol. 2015 Apr; 25(4):1201-7.
    View in: PubMed
    Score: 0.022
  101. Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol. 2014 Nov 01; 114(9):1303-8.
    View in: PubMed
    Score: 0.022
  102. Acute myocardial infarct detection with dual energy CT: correlation with single photon emission computed tomography myocardial scintigraphy in a canine model. Acta Radiol. 2013 Apr 01; 54(3):259-66.
    View in: PubMed
    Score: 0.020
  103. Individual patient data meta-analysis for the clinical assessment of coronary computed tomography angiography: protocol of the Collaborative Meta-Analysis of Cardiac CT (CoMe-CCT). Syst Rev. 2013 Feb 15; 2:13.
    View in: PubMed
    Score: 0.020
  104. Incremental prognostic value of different components of coronary atherosclerotic plaque at cardiac CT angiography beyond coronary calcification in patients with acute chest pain. Radiology. 2012 Sep; 264(3):679-90.
    View in: PubMed
    Score: 0.019
  105. Adenosine-stress dynamic myocardial perfusion imaging with second-generation dual-source CT: comparison with conventional catheter coronary angiography and SPECT nuclear myocardial perfusion imaging. AJR Am J Roentgenol. 2012 Mar; 198(3):521-9.
    View in: PubMed
    Score: 0.018
  106. Pulmonary embolism: CT signs and cardiac biomarkers for predicting right ventricular dysfunction. Eur Respir J. 2012 Apr; 39(4):919-26.
    View in: PubMed
    Score: 0.018
  107. Reproducibility of left and right ventricular mass measurements with cardiac CT. J Cardiovasc Comput Tomogr. 2011 Sep-Oct; 5(5):317-24.
    View in: PubMed
    Score: 0.018
  108. CT signs of right ventricular dysfunction: prognostic role in acute pulmonary embolism. JACC Cardiovasc Imaging. 2011 Aug; 4(8):841-9.
    View in: PubMed
    Score: 0.018
  109. Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique-comparison with traditional filtered back projection. Eur Radiol. 2011 Oct; 21(10):2130-8.
    View in: PubMed
    Score: 0.017
  110. Iterative image reconstruction techniques: Applications for cardiac CT. J Cardiovasc Comput Tomogr. 2011 Jul-Aug; 5(4):225-30.
    View in: PubMed
    Score: 0.017
  111. Accuracy of coronary artery stenosis detection with CT versus conventional coronary angiography compared with composite findings from both tests as an enhanced reference standard. Eur Radiol. 2011 Sep; 21(9):1895-903.
    View in: PubMed
    Score: 0.017
  112. Dual energy CT pulmonary blood volume assessment in acute pulmonary embolism - correlation with D-dimer level, right heart strain and clinical outcome. Eur Radiol. 2011 Sep; 21(9):1914-21.
    View in: PubMed
    Score: 0.017
  113. A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. Eur Heart J. 2011 Jun; 32(11):1316-30.
    View in: PubMed
    Score: 0.017
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.