Connection

U. Schoepf to Prospective Studies

This is a "connection" page, showing publications U. Schoepf has written about Prospective Studies.
Connection Strength

2.322
  1. Evaluation of a Tube Voltage-Tailored Contrast Medium Injection Protocol for Coronary CT Angiography: Results From the Prospective VOLCANIC Study. AJR Am J Roentgenol. 2020 11; 215(5):1049-1056.
    View in: PubMed
    Score: 0.102
  2. Contrast medium injection protocols for coronary CT angiography: should contrast medium volumes be tailored to body weight or body surface area? Clin Radiol. 2020 05; 75(5):395.e17-395.e24.
    View in: PubMed
    Score: 0.098
  3. Design of CTP-PRO study (impact of stress Cardiac computed Tomography myocardial Perfusion on downstream resources and PROgnosis in patients with suspected or known coronary artery disease: A multicenter international study). Int J Cardiol. 2019 10 01; 292:253-257.
    View in: PubMed
    Score: 0.094
  4. Prognostic value of CT myocardial perfusion imaging and CT-derived fractional flow reserve for major adverse cardiac events in patients with coronary artery disease. J Cardiovasc Comput Tomogr. 2019 May - Jun; 13(3):26-33.
    View in: PubMed
    Score: 0.092
  5. Accuracy and Radiation Dose Reduction Using Low-Voltage Computed Tomography Coronary Artery Calcium Scoring With Tin Filtration. Am J Cardiol. 2017 02 15; 119(4):675-680.
    View in: PubMed
    Score: 0.078
  6. Comparison of Coronary Computed Tomography Angiography-Derived vs Invasive Fractional Flow Reserve Assessment: Meta-Analysis with Subgroup Evaluation of Intermediate Stenosis. Acad Radiol. 2016 11; 23(11):1402-1411.
    View in: PubMed
    Score: 0.078
  7. Detection and size measurements of pulmonary nodules in ultra-low-dose CT with iterative reconstruction compared to low dose CT. Eur J Radiol. 2016 Mar; 85(3):564-70.
    View in: PubMed
    Score: 0.074
  8. Myocardial Late Gadolinium Enhancement: Accuracy of T1 Mapping-based Synthetic Inversion-Recovery Imaging. Radiology. 2016 Feb; 278(2):374-82.
    View in: PubMed
    Score: 0.072
  9. Effect of reduced x-ray tube voltage, low iodine concentration contrast medium, and sinogram-affirmed iterative reconstruction on image quality and radiation dose at coronary CT angiography: results of the prospective multicenter REALISE trial. J Cardiovasc Comput Tomogr. 2015 May-Jun; 9(3):215-24.
    View in: PubMed
    Score: 0.069
  10. Iterative reconstruction to preserve image quality and diagnostic accuracy at reduced radiation dose in coronary CT angiography: an intraindividual comparison. JACC Cardiovasc Imaging. 2013 Dec; 6(12):1239-49.
    View in: PubMed
    Score: 0.063
  11. Detection of coronary artery stenosis with sub-milliSievert radiation dose by prospectively ECG-triggered high-pitch spiral CT angiography and iterative reconstruction. Eur Radiol. 2013 Nov; 23(11):2927-33.
    View in: PubMed
    Score: 0.062
  12. Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography. Radiology. 2012 Sep; 264(3):700-7.
    View in: PubMed
    Score: 0.058
  13. CT detection of myocardial blood volume deficits: dual-energy CT compared with single-energy CT spectra. J Cardiovasc Comput Tomogr. 2011 Nov-Dec; 5(6):421-9.
    View in: PubMed
    Score: 0.055
  14. Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology. 2007 Jul; 244(1):112-20.
    View in: PubMed
    Score: 0.041
  15. Does two-segment image reconstruction at 64-section CT coronary angiography improve image quality and diagnostic accuracy? Radiology. 2007 Jul; 244(1):121-9.
    View in: PubMed
    Score: 0.041
  16. Serial Changes in Coronary Plaque Formation Using CT Angiography in Patients Undergoing PCSK9-Inhibitor Therapy With 1-year Follow-up. J Thorac Imaging. 2022 Sep 01; 37(5):285-291.
    View in: PubMed
    Score: 0.029
  17. Impact of Artificial Intelligence Assistance on Chest CT Interpretation Times: A Prospective Randomized Study. AJR Am J Roentgenol. 2022 Nov; 219(5):743-751.
    View in: PubMed
    Score: 0.029
  18. Coronary CTA With AI-QCT Interpretation: Comparison With Myocardial Perfusion Imaging for Detection of Obstructive Stenosis Using Invasive Angiography as Reference Standard. AJR Am J Roentgenol. 2022 09; 219(3):407-419.
    View in: PubMed
    Score: 0.029
  19. Functional CAD-RADS using FFRCT on therapeutic management and prognosis in patients with coronary artery disease. Eur Radiol. 2022 Aug; 32(8):5210-5221.
    View in: PubMed
    Score: 0.028
  20. One-year outcomes of CCTA alone versus machine learning-based FFRCT for coronary artery disease: a single-center, prospective study. Eur Radiol. 2022 Aug; 32(8):5179-5188.
    View in: PubMed
    Score: 0.028
  21. Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence. Open Heart. 2021 11; 8(2).
    View in: PubMed
    Score: 0.028
  22. Measurement accuracy of prototype non-contrast, compressed sensing-based, respiratory motion-resolved whole heart cardiovascular magnetic resonance angiography for the assessment of thoracic aortic dilatation: comparison with computed tomography angiography. J Cardiovasc Magn Reson. 2021 02 08; 23(1):7.
    View in: PubMed
    Score: 0.026
  23. Pulmonary embolism: comprehensive diagnosis by using electron-beam CT for detection of emboli and assessment of pulmonary blood flow. Radiology. 2000 Dec; 217(3):693-700.
    View in: PubMed
    Score: 0.026
  24. Stress Myocardial Perfusion Imaging vs Coronary Computed Tomographic Angiography for Diagnosis of Invasive Vessel-Specific Coronary Physiology: Predictive Modeling Results From the Computed Tomographic Evaluation of Atherosclerotic Determinants of Myocardial Ischemia (CREDENCE) Trial. JAMA Cardiol. 2020 12 01; 5(12):1338-1348.
    View in: PubMed
    Score: 0.026
  25. A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images. Nat Commun. 2020 11 30; 11(1):6090.
    View in: PubMed
    Score: 0.026
  26. Free-Breathing Fast Low-Angle Shot Quiescent-Interval Slice-Selective Magnetic Resonance Angiography for Improved Detection of Vascular Stenoses in the Pelvis and Abdomen: Technical Development. Invest Radiol. 2019 12; 54(12):752-756.
    View in: PubMed
    Score: 0.024
  27. Coronary CT angiography derived plaque markers correlated with invasive instantaneous flow reserve for detecting hemodynamically significant coronary stenoses. Eur J Radiol. 2020 Jan; 122:108744.
    View in: PubMed
    Score: 0.024
  28. Correlation of machine learning computed tomography-based fractional flow reserve with instantaneous wave free ratio to detect hemodynamically significant coronary stenosis. Clin Res Cardiol. 2020 Jun; 109(6):735-745.
    View in: PubMed
    Score: 0.024
  29. Electrocardiographically gated thin-section CT of the lung. Radiology. 1999 Sep; 212(3):649-54.
    View in: PubMed
    Score: 0.024
  30. Correcting versus resolving respiratory motion in free-breathing whole-heart MRA: a comparison in patients with thoracic aortic disease. Eur Radiol Exp. 2019 07 31; 3(1):29.
    View in: PubMed
    Score: 0.024
  31. Assessing the value of coronary artery computed tomography as the first-line anatomical test for stable patients with indications for invasive angiography due to suspected coronary artery disease. Initial cost analysis in the CAT-CAD randomized trial. J Cardiovasc Comput Tomogr. 2020 Jan - Feb; 14(1):75-79.
    View in: PubMed
    Score: 0.024
  32. Iodine quantification based on rest / stress perfusion dual energy CT to differentiate ischemic, infarcted and normal myocardium. Eur J Radiol. 2019 Mar; 112:136-143.
    View in: PubMed
    Score: 0.023
  33. Diagnostic Accuracy of Noncontrast Self-navigated Free-breathing MR Angiography versus CT Angiography: A Prospective Study in Pediatric Patients with Suspected Anomalous Coronary Arteries. Acad Radiol. 2019 10; 26(10):1309-1317.
    View in: PubMed
    Score: 0.023
  34. The value of Coronary Artery computed Tomography as the first-line anatomical test for stable patients with indications for invasive angiography due to suspected Coronary Artery Disease: CAT-CAD randomized trial. J Cardiovasc Comput Tomogr. 2018 Nov - Dec; 12(6):472-479.
    View in: PubMed
    Score: 0.022
  35. Diagnostic yield and accuracy of coronary CT angiography after abnormal nuclear myocardial perfusion imaging. Sci Rep. 2018 06 15; 8(1):9228.
    View in: PubMed
    Score: 0.022
  36. Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve: Result From the MACHINE Consortium. Circ Cardiovasc Imaging. 2018 06; 11(6):e007217.
    View in: PubMed
    Score: 0.022
  37. Extracellular volume quantitation using dual-energy CT in patients with heart failure: Comparison with 3T cardiac MR. Int J Cardiol. 2018 Oct 01; 268:236-240.
    View in: PubMed
    Score: 0.022
  38. A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions. Eur Radiol. 2018 Aug; 28(8):3393-3404.
    View in: PubMed
    Score: 0.021
  39. Beam-hardening in 70-kV Coronary CT angiography: Artifact reduction using an advanced post-processing algorithm. Eur J Radiol. 2018 Apr; 101:111-117.
    View in: PubMed
    Score: 0.021
  40. High-pitch low-voltage CT coronary artery calcium scoring with tin filtration: accuracy and radiation dose reduction. Eur Radiol. 2018 Jul; 28(7):3097-3104.
    View in: PubMed
    Score: 0.021
  41. Quantitative inversion time prescription for myocardial late gadolinium enhancement using T1-mapping-based synthetic inversion recovery imaging: reducing subjectivity in the estimation of inversion time. Int J Cardiovasc Imaging. 2018 Jun; 34(6):921-929.
    View in: PubMed
    Score: 0.021
  42. Technical Feasibility of a Combined Noncontrast Magnetic Resonance Protocol for Preoperative Transcatheter Aortic Valve Replacement Evaluation. J Thorac Imaging. 2018 Jan; 33(1):60-67.
    View in: PubMed
    Score: 0.021
  43. Re-Establishing Brain Networks in Patients with ESRD after Successful Kidney Transplantation. Clin J Am Soc Nephrol. 2018 01 06; 13(1):109-117.
    View in: PubMed
    Score: 0.021
  44. Iterative reconstruction improves detection of in-stent restenosis by high-pitch dual-source coronary CT angiography. Sci Rep. 2017 07 31; 7(1):6956.
    View in: PubMed
    Score: 0.021
  45. Accuracy of Noncontrast Quiescent-Interval Single-Shot Lower Extremity MR Angiography Versus CT?Angiography for Diagnosis of Peripheral Artery Disease: Comparison With Digital Subtraction Angiography. JACC Cardiovasc Imaging. 2017 10; 10(10 Pt A):1116-1124.
    View in: PubMed
    Score: 0.020
  46. Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging. Eur Radiol. 2017 Aug; 27(8):3235-3243.
    View in: PubMed
    Score: 0.020
  47. Can dual-energy computed tomography improve visualization of hypoenhancing liver lesions in portal venous phase? Assessment of advanced image-based virtual monoenergetic images. Clin Imaging. 2017 Jan - Feb; 41:118-124.
    View in: PubMed
    Score: 0.020
  48. T(Rho) and magnetization transfer and INvErsion recovery (TRAMINER)-prepared imaging: A novel contrast-enhanced flow-independent dark-blood technique for the evaluation of myocardial late gadolinium enhancement in patients with myocardial infarction. J Magn Reson Imaging. 2017 05; 45(5):1429-1437.
    View in: PubMed
    Score: 0.019
  49. Virtual unenhanced imaging of the liver with third-generation dual-source dual-energy CT and advanced modeled iterative reconstruction. Eur J Radiol. 2016 Jul; 85(7):1257-64.
    View in: PubMed
    Score: 0.019
  50. Optimization of window settings for virtual monoenergetic imaging in dual-energy CT of the liver: A multi-reader evaluation of standard monoenergetic and advanced imaged-based monoenergetic datasets. Eur J Radiol. 2016 Apr; 85(4):695-9.
    View in: PubMed
    Score: 0.019
  51. Non-Electrocardiogram-Triggered 70-kVp High-Pitch Computed Tomography Angiography of the Whole Aorta With Iterative Reconstruction: Initial Results. J Comput Assist Tomogr. 2016 Jan-Feb; 40(1):109-17.
    View in: PubMed
    Score: 0.018
  52. Approaches to ultra-low radiation dose coronary artery calcium scoring based on 3rd generation dual-source CT: A phantom study. Eur J Radiol. 2016 Jan; 85(1):39-47.
    View in: PubMed
    Score: 0.018
  53. 70-kVp High-pitch Computed Tomography Pulmonary Angiography with 40 mL Contrast Agent: Initial Experience. Acad Radiol. 2015 Dec; 22(12):1562-70.
    View in: PubMed
    Score: 0.018
  54. Image quality, radiation dose, and diagnostic accuracy of prospectively ECG-triggered high-pitch coronary CT angiography at 70?kVp in a clinical setting: comparison with invasive coronary angiography. Eur Radiol. 2016 Mar; 26(3):797-806.
    View in: PubMed
    Score: 0.018
  55. Prospectively ECG-Triggered Sequential Dual-Source Coronary CT Angiography in Patients with Atrial Fibrillation: Influence of Heart Rate on Image Quality and Evaluation of Diagnostic Accuracy. PLoS One. 2015; 10(7):e0134194.
    View in: PubMed
    Score: 0.018
  56. A non-contrast self-navigated 3-dimensional MR technique for aortic root and vascular access route assessment in the context of transcatheter aortic valve replacement: proof of concept. Eur Radiol. 2016 Apr; 26(4):951-8.
    View in: PubMed
    Score: 0.018
  57. Prospectively ECG-triggered high-pitch 80?kVp coronary computed tomography angiography with 30?mL of 270?mg I/mL contrast material and iterative reconstruction. Acta Radiol. 2016 Mar; 57(3):287-94.
    View in: PubMed
    Score: 0.018
  58. Ultralow-radiation-dose chest CT: accuracy for lung densitometry and emphysema detection. AJR Am J Roentgenol. 2015 Apr; 204(4):743-9.
    View in: PubMed
    Score: 0.018
  59. Radiation dose and image quality of 70 kVp cerebral CT angiography with optimized sinogram-affirmed iterative reconstruction: comparison with 120 kVp cerebral CT angiography. Eur Radiol. 2015 May; 25(5):1453-63.
    View in: PubMed
    Score: 0.017
  60. High-pitch coronary CT angiography at 70 kVp with low contrast medium volume: comparison of 80 and 100 kVp high-pitch protocols. Medicine (Baltimore). 2014 Nov; 93(22):e92.
    View in: PubMed
    Score: 0.017
  61. High-pitch computed tomography pulmonary angiography with iterative reconstruction at 80 kVp and 20 mL contrast agent volume. Eur Radiol. 2014 Dec; 24(12):3260-8.
    View in: PubMed
    Score: 0.017
  62. Pulmonary embolism and renal vein thrombosis in patients with nephrotic syndrome: prospective evaluation of prevalence and risk factors with CT. Radiology. 2014 Dec; 273(3):897-906.
    View in: PubMed
    Score: 0.017
  63. Incremental value of pharmacological stress cardiac dual-energy CT over coronary CT angiography alone for the assessment of coronary artery disease in a high-risk population. AJR Am J Roentgenol. 2014 Jul; 203(1):W70-7.
    View in: PubMed
    Score: 0.017
  64. Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system. Radiology. 2014 Nov; 273(2):373-82.
    View in: PubMed
    Score: 0.017
  65. Feasibility of prospectively ECG-triggered high-pitch coronary CT angiography with 30 mL iodinated contrast agent at 70 kVp: initial experience. Eur Radiol. 2014 Jul; 24(7):1537-46.
    View in: PubMed
    Score: 0.016
  66. Diagnostic accuracy of coronary CT angiography: comparison of filtered back projection and iterative reconstruction with different strengths. J Comput Assist Tomogr. 2014 Mar-Apr; 38(2):179-84.
    View in: PubMed
    Score: 0.016
  67. 128-slice acceletated-pitch dual energy CT angiography of the head and neck: comparison of different low contrast medium volumes. PLoS One. 2013; 8(11):e80939.
    View in: PubMed
    Score: 0.016
  68. First-arterial-pass dual-energy CT for assessment of myocardial blood supply: do we need rest, stress, and delayed acquisition? Comparison with SPECT. Radiology. 2014 Mar; 270(3):708-16.
    View in: PubMed
    Score: 0.016
  69. Predictive value of zero calcium score and low-end percentiles for the presence of significant coronary artery stenosis in stable patients with suspected coronary artery disease. Rofo. 2013 Aug; 185(8):726-32.
    View in: PubMed
    Score: 0.016
  70. Adenosine-stress dynamic myocardial perfusion imaging with second-generation dual-source CT: comparison with conventional catheter coronary angiography and SPECT nuclear myocardial perfusion imaging. AJR Am J Roentgenol. 2012 Mar; 198(3):521-9.
    View in: PubMed
    Score: 0.014
  71. Patient management after noninvasive cardiac imaging results from SPARC (Study of myocardial perfusion and coronary anatomy imaging roles in coronary artery disease). J Am Coll Cardiol. 2012 Jan 31; 59(5):462-74.
    View in: PubMed
    Score: 0.014
  72. Pulmonary embolism: CT signs and cardiac biomarkers for predicting right ventricular dysfunction. Eur Respir J. 2012 Apr; 39(4):919-26.
    View in: PubMed
    Score: 0.014
  73. Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol. 2012 Jan; 22(1):93-103.
    View in: PubMed
    Score: 0.014
  74. Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology. 2011 Aug; 260(2):390-9.
    View in: PubMed
    Score: 0.013
  75. Accuracy of coronary artery stenosis detection with CT versus conventional coronary angiography compared with composite findings from both tests as an enhanced reference standard. Eur Radiol. 2011 Sep; 21(9):1895-903.
    View in: PubMed
    Score: 0.013
  76. A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. Eur Heart J. 2011 Jun; 32(11):1316-30.
    View in: PubMed
    Score: 0.013
  77. Optimized image reconstruction for detection of deep venous thrombosis at multidetector-row CT venography. Eur Radiol. 2006 Feb; 16(2):269-75.
    View in: PubMed
    Score: 0.009
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.