Connection

U. Schoepf to Contrast Media

This is a "connection" page, showing publications U. Schoepf has written about Contrast Media.
Connection Strength

9.991
  1. Evaluation of a Tube Voltage-Tailored Contrast Medium Injection Protocol for Coronary CT Angiography: Results From the Prospective VOLCANIC Study. AJR Am J Roentgenol. 2020 11; 215(5):1049-1056.
    View in: PubMed
    Score: 0.545
  2. Contrast medium injection protocols for coronary CT angiography: should contrast medium volumes be tailored to body weight or body surface area? Clin Radiol. 2020 05; 75(5):395.e17-395.e24.
    View in: PubMed
    Score: 0.519
  3. Contrast Media for Coronary CT Angiography: Should an Iso-osmolar Agent Be Used? Radiology. 2018 01; 286(1):81-82.
    View in: PubMed
    Score: 0.451
  4. Contrast-Induced Nephropathy. Circulation. 2015 Nov 17; 132(20):1931-6.
    View in: PubMed
    Score: 0.389
  5. Myocardial Late Gadolinium Enhancement: Accuracy of T1 Mapping-based Synthetic Inversion-Recovery Imaging. Radiology. 2016 Feb; 278(2):374-82.
    View in: PubMed
    Score: 0.381
  6. Effect of reduced x-ray tube voltage, low iodine concentration contrast medium, and sinogram-affirmed iterative reconstruction on image quality and radiation dose at coronary CT angiography: results of the prospective multicenter REALISE trial. J Cardiovasc Comput Tomogr. 2015 May-Jun; 9(3):215-24.
    View in: PubMed
    Score: 0.368
  7. Cardiothoracic CT angiography: current contrast medium delivery strategies. AJR Am J Roentgenol. 2011 Mar; 196(3):W260-72.
    View in: PubMed
    Score: 0.281
  8. Current contrast media delivery strategies for cardiac and pulmonary multidetector-row computed tomography angiography. J Thorac Imaging. 2010 Nov; 25(4):270-7.
    View in: PubMed
    Score: 0.275
  9. A personalized and optimal approach for dosing contrast material at coronary computed tomography angiography. Annu Int Conf IEEE Eng Med Biol Soc. 2009; 2009:3521-4.
    View in: PubMed
    Score: 0.242
  10. Iodinated contrast media: effect of osmolarity and injection temperature on erythrocyte morphology in vitro. Acta Radiol. 2008 Apr; 49(3):337-43.
    View in: PubMed
    Score: 0.230
  11. Right heart: split-bolus injection of diluted contrast medium for visualization at coronary CT angiography. Radiology. 2008 May; 247(2):356-64.
    View in: PubMed
    Score: 0.229
  12. Evaluating a New Contrast Media Injection System in Coronary CT Angiography. Radiol Technol. 2021 Jan; 92(3):232-239.
    View in: PubMed
    Score: 0.139
  13. Diagnostic accuracy of non-contrast quiescent-interval slice-selective (QISS) MRA combined with MRI-based vascular calcification visualization for the assessment of arterial stenosis in patients with lower extremity peripheral artery disease. Eur Radiol. 2021 May; 31(5):2778-2787.
    View in: PubMed
    Score: 0.137
  14. Gadobutrol-Enhanced Cardiac Magnetic Resonance Imaging for Detection of Coronary Artery Disease. J Am Coll Cardiol. 2020 09 29; 76(13):1536-1547.
    View in: PubMed
    Score: 0.136
  15. Review of Clinical Applications for Virtual Monoenergetic Dual-Energy CT. Radiology. 2019 11; 293(2):260-271.
    View in: PubMed
    Score: 0.127
  16. Iodine quantification based on rest / stress perfusion dual energy CT to differentiate ischemic, infarcted and normal myocardium. Eur J Radiol. 2019 Mar; 112:136-143.
    View in: PubMed
    Score: 0.121
  17. Feasibility of extracellular volume quantification using dual-energy CT. J Cardiovasc Comput Tomogr. 2019 Jan - Feb; 13(1):81-84.
    View in: PubMed
    Score: 0.119
  18. The effect of abdominal contrast-enhanced CT on DNA double-strand breaks in peripheral blood lymphocytes: an in vitro and in vivo study. Acta Radiol. 2019 Jun; 60(6):687-693.
    View in: PubMed
    Score: 0.118
  19. Contrast media injection protocol optimization for dual-energy coronary CT angiography: results from a circulation phantom. Eur Radiol. 2018 Aug; 28(8):3473-3481.
    View in: PubMed
    Score: 0.114
  20. Diagnostic accuracy of low and high tube voltage coronary CT angiography using an X-ray tube potential-tailored contrast medium injection protocol. Eur Radiol. 2018 May; 28(5):2134-2142.
    View in: PubMed
    Score: 0.112
  21. Acute kidney injury in patients with nephrotic syndrome undergoing contrast-enhanced CT for suspected venous thromboembolism: a propensity score-matched retrospective cohort study. Eur Radiol. 2018 Apr; 28(4):1585-1593.
    View in: PubMed
    Score: 0.112
  22. Optimizing Contrast Media Injection Protocols in Computed Tomography Angiography at Different Tube Voltages: Evaluation in a Circulation Phantom. J Comput Assist Tomogr. 2017 Sep/Oct; 41(5):804-810.
    View in: PubMed
    Score: 0.110
  23. Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging. Eur Radiol. 2017 Aug; 27(8):3235-3243.
    View in: PubMed
    Score: 0.105
  24. State-of-the-Art Pulmonary CT Angiography for Acute Pulmonary Embolism. AJR Am J Roentgenol. 2017 Mar; 208(3):495-504.
    View in: PubMed
    Score: 0.105
  25. Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison. Eur J Radiol. 2016 May; 85(5):972-8.
    View in: PubMed
    Score: 0.099
  26. Vascular Imaging Before Transcatheter Aortic Valve Replacement (TAVR): Why and How? Curr Cardiol Rep. 2016 Feb; 18(2):14.
    View in: PubMed
    Score: 0.099
  27. Contrast-induced nephropathy in CT: incidence, risk factors and strategies for prevention. Eur Radiol. 2016 Sep; 26(9):3310-8.
    View in: PubMed
    Score: 0.098
  28. Dual-energy CT of the pancreas: improved carcinoma-to-pancreas contrast with a noise-optimized monoenergetic reconstruction algorithm. Eur J Radiol. 2015 Nov; 84(11):2052-8.
    View in: PubMed
    Score: 0.095
  29. Prospectively ECG-triggered high-pitch 80?kVp coronary computed tomography angiography with 30?mL of 270?mg I/mL contrast material and iterative reconstruction. Acta Radiol. 2016 Mar; 57(3):287-94.
    View in: PubMed
    Score: 0.095
  30. Low-volume contrast medium protocol for comprehensive cardiac and aortoiliac CT assessment in the context of transcatheter aortic valve replacement. Acad Radiol. 2015 Sep; 22(9):1138-46.
    View in: PubMed
    Score: 0.095
  31. Delayed adverse reactions to the parenteral administration of iodinated contrast media. AJR Am J Roentgenol. 2014 Dec; 203(6):1163-70.
    View in: PubMed
    Score: 0.091
  32. High-pitch coronary CT angiography at 70 kVp with low contrast medium volume: comparison of 80 and 100 kVp high-pitch protocols. Medicine (Baltimore). 2014 Nov; 93(22):e92.
    View in: PubMed
    Score: 0.091
  33. Computer-aided stenosis detection at coronary CT angiography: effect on performance of readers with different experience levels. Eur Radiol. 2015 Mar; 25(3):694-702.
    View in: PubMed
    Score: 0.090
  34. High-pitch computed tomography pulmonary angiography with iterative reconstruction at 80 kVp and 20 mL contrast agent volume. Eur Radiol. 2014 Dec; 24(12):3260-8.
    View in: PubMed
    Score: 0.089
  35. Is contrast medium osmolality a causal factor for contrast-induced nephropathy? Biomed Res Int. 2014; 2014:931413.
    View in: PubMed
    Score: 0.087
  36. Monoenergetic extrapolation of cardiac dual energy CT for artifact reduction. Acta Radiol. 2015 Apr; 56(4):413-8.
    View in: PubMed
    Score: 0.087
  37. Contrast-induced acute kidney injury: definition, epidemiology, and outcome. Biomed Res Int. 2014; 2014:859328.
    View in: PubMed
    Score: 0.087
  38. 128-slice acceletated-pitch dual energy CT angiography of the head and neck: comparison of different low contrast medium volumes. PLoS One. 2013; 8(11):e80939.
    View in: PubMed
    Score: 0.085
  39. Predictive value of zero calcium score and low-end percentiles for the presence of significant coronary artery stenosis in stable patients with suspected coronary artery disease. Rofo. 2013 Aug; 185(8):726-32.
    View in: PubMed
    Score: 0.083
  40. Fully automated derivation of coronary artery calcium scores and cardiovascular risk assessment from contrast medium-enhanced coronary CT angiography studies. Eur Radiol. 2013 Mar; 23(3):650-7.
    View in: PubMed
    Score: 0.078
  41. Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography. Radiology. 2012 Sep; 264(3):700-7.
    View in: PubMed
    Score: 0.077
  42. Isolated non-compaction of the left ventricle in a patient with new-onset heart failure: morphologic and functional evaluation with cardiac multidetector computed tomography. Korean J Radiol. 2012 Mar-Apr; 13(2):244-8.
    View in: PubMed
    Score: 0.075
  43. CT of coronary heart disease: Part 1, CT of myocardial infarction, ischemia, and viability. AJR Am J Roentgenol. 2012 Mar; 198(3):531-47.
    View in: PubMed
    Score: 0.075
  44. Impact of ventricular contrast medium attenuation on the accuracy of left and right ventricular function analysis at cardiac multi detector-row CT compared with cardiac MRI. Acad Radiol. 2012 Apr; 19(4):395-405.
    View in: PubMed
    Score: 0.074
  45. Can non-calcified coronary artery plaques be detected on non-contrast CT calcium scoring studies? Acad Radiol. 2011 Jul; 18(7):858-65.
    View in: PubMed
    Score: 0.072
  46. High-temporal resolution dual-energy computed tomography of the heart using a novel hybrid image reconstruction algorithm: initial experience. J Comput Assist Tomogr. 2011 Jan-Feb; 35(1):119-25.
    View in: PubMed
    Score: 0.069
  47. Intra-atrial course of the right coronary artery demonstrated at computed tomography coronary angiography. J Thorac Imaging. 2010 Nov; 25(4):W115-7.
    View in: PubMed
    Score: 0.069
  48. Evaluation of plaques and stenosis. Radiol Clin North Am. 2010 Jul; 48(4):729-44.
    View in: PubMed
    Score: 0.067
  49. CT of coronary artery disease. Radiology. 2009 Nov; 253(2):317-38.
    View in: PubMed
    Score: 0.064
  50. Reproducibility of automated noncalcified coronary artery plaque burden assessment at coronary CT angiography. J Thorac Imaging. 2009 May; 24(2):96-102.
    View in: PubMed
    Score: 0.062
  51. Impact of right ventricular contrast attenuation on the accuracy of right ventricular function analysis at cardiac multi-detector-row CT. Eur J Radiol. 2010 Mar; 73(3):560-5.
    View in: PubMed
    Score: 0.061
  52. Coronary CT angiography: applications. Radiol Clin North Am. 2009 Jan; 47(1):91-107.
    View in: PubMed
    Score: 0.060
  53. Iso-osmolality versus low-osmolality iodinated contrast medium at intravenous contrast-enhanced CT: effect on kidney function. Radiology. 2008 Jul; 248(1):97-105.
    View in: PubMed
    Score: 0.058
  54. [CT coronary angiography: indications, image acquisition, and interpretation]. Radiologia. 2008 Mar-Apr; 50(2):113-30.
    View in: PubMed
    Score: 0.057
  55. Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology. 2007 Jul; 244(1):112-20.
    View in: PubMed
    Score: 0.054
  56. Coronary CT angiography. Radiology. 2007 Jul; 244(1):48-63.
    View in: PubMed
    Score: 0.054
  57. Coronary CTA: image acquisition and interpretation. J Thorac Imaging. 2007 Feb; 22(1):22-34.
    View in: PubMed
    Score: 0.053
  58. CT of coronary artery disease. J Thorac Imaging. 2007 Feb; 22(1):40-8.
    View in: PubMed
    Score: 0.053
  59. 64 slice cardiovascular CT in the emergency department: concepts and first experiences. Radiol Med. 2006 Jun; 111(4):481-96.
    View in: PubMed
    Score: 0.051
  60. Pediatric superior vena cava syndrome: assessment at low radiation dose 64-slice CT angiography. J Thorac Imaging. 2006 Mar; 21(1):71-2.
    View in: PubMed
    Score: 0.050
  61. Saline chasing technique with dual-syringe injector systems for multi-detector row computed tomographic angiography: rationale, indications, and protocols. Curr Probl Diagn Radiol. 2006 Jan-Feb; 35(1):1-11.
    View in: PubMed
    Score: 0.049
  62. Diagnosing pulmonary embolism: time to rewrite the textbooks. Int J Cardiovasc Imaging. 2005 Feb; 21(1):155-63.
    View in: PubMed
    Score: 0.046
  63. CT of coronary artery disease. Radiology. 2004 Jul; 232(1):18-37.
    View in: PubMed
    Score: 0.044
  64. Optimal contrast application for cardiac 4-detector-row computed tomography. Invest Radiol. 2003 Nov; 38(11):690-4.
    View in: PubMed
    Score: 0.042
  65. Spiral CT for pulmonary embolism: the paradigm has shifted. Am Heart Hosp J. 2003; 1(4):281-8.
    View in: PubMed
    Score: 0.040
  66. Stent imaging on a clinical dual-source photon-counting detector CT system-impact of luminal attenuation and sharp kernels on lumen visibility. Eur Radiol. 2023 Apr; 33(4):2469-2477.
    View in: PubMed
    Score: 0.040
  67. Left atrial strain correlates with severity of cardiac involvement in Anderson-Fabry disease. Eur Radiol. 2023 Mar; 33(3):2039-2051.
    View in: PubMed
    Score: 0.039
  68. Automated Dual-energy Computed Tomography-based Extracellular Volume Estimation for Myocardial Characterization in Patients With Ischemic and Nonischemic Cardiomyopathy. J Thorac Imaging. 2022 Sep 01; 37(5):307-314.
    View in: PubMed
    Score: 0.038
  69. CarDiac magnEtic Resonance for prophylactic Implantable-cardioVerter defibrillAtor ThErapy in Non-Ischaemic dilated CardioMyopathy: an international Registry. Europace. 2021 07 18; 23(7):1072-1083.
    View in: PubMed
    Score: 0.036
  70. Comparison of 2D and 3D quiescent-interval slice-selective non-contrast MR angiography in patients with peripheral artery disease. MAGMA. 2021 Oct; 34(5):649-658.
    View in: PubMed
    Score: 0.036
  71. Emerging methods for the characterization of ischemic heart disease: ultrafast Doppler angiography, micro-CT, photon-counting CT, novel MRI and PET techniques, and artificial intelligence. Eur Radiol Exp. 2021 03 25; 5(1):12.
    View in: PubMed
    Score: 0.035
  72. Cardiac magnetic resonance imaging features prognostic information in patients with suspected myocardial infarction with non-obstructed coronary arteries. Int J Cardiol. 2021 03 15; 327:223-230.
    View in: PubMed
    Score: 0.035
  73. More holes, more contrast? Comparing an 18-gauge non-fenestrated catheter with a 22-gauge fenestrated catheter for cardiac CT. PLoS One. 2020; 15(6):e0234311.
    View in: PubMed
    Score: 0.033
  74. Segmental and subsegmental pulmonary arteries: evaluation with electron-beam versus spiral CT. Radiology. 2000 Feb; 214(2):433-9.
    View in: PubMed
    Score: 0.033
  75. [Imaging of the thorax with multislice spiral CT]. Radiologe. 1999 Nov; 39(11):943-51.
    View in: PubMed
    Score: 0.032
  76. Dual-energy CT of the heart current and future status. Eur J Radiol. 2018 Aug; 105:110-118.
    View in: PubMed
    Score: 0.029
  77. Beam-hardening in 70-kV Coronary CT angiography: Artifact reduction using an advanced post-processing algorithm. Eur J Radiol. 2018 Apr; 101:111-117.
    View in: PubMed
    Score: 0.028
  78. Quantitative inversion time prescription for myocardial late gadolinium enhancement using T1-mapping-based synthetic inversion recovery imaging: reducing subjectivity in the estimation of inversion time. Int J Cardiovasc Imaging. 2018 Jun; 34(6):921-929.
    View in: PubMed
    Score: 0.028
  79. Optimization of window settings for standard and advanced virtual monoenergetic imaging in abdominal dual-energy CT angiography. Abdom Radiol (NY). 2017 03; 42(3):772-780.
    View in: PubMed
    Score: 0.027
  80. Accuracy of Noncontrast Quiescent-Interval Single-Shot Lower Extremity MR Angiography Versus CT?Angiography for Diagnosis of Peripheral Artery Disease: Comparison With Digital Subtraction Angiography. JACC Cardiovasc Imaging. 2017 10; 10(10 Pt A):1116-1124.
    View in: PubMed
    Score: 0.026
  81. CT angiography for planning transcatheter aortic valve replacement using automated tube voltage selection: Image quality and radiation exposure. Eur J Radiol. 2017 Jan; 86:276-283.
    View in: PubMed
    Score: 0.026
  82. Optimal timing of image acquisition for arterial first pass CT myocardial perfusion imaging. Eur J Radiol. 2017 Jan; 86:227-233.
    View in: PubMed
    Score: 0.026
  83. Intra-individual comparison of CAIPIRINHA VIBE technique with conventional VIBE sequences in contrast-enhanced MRI of focal liver lesions. Eur J Radiol. 2017 Jan; 86:20-25.
    View in: PubMed
    Score: 0.026
  84. Radiation Optimized Dual-source Dual-energy Computed Tomography Pulmonary Angiography: Intra-individual and Inter-individual Comparison. Acad Radiol. 2017 01; 24(1):13-21.
    View in: PubMed
    Score: 0.026
  85. T(Rho) and magnetization transfer and INvErsion recovery (TRAMINER)-prepared imaging: A novel contrast-enhanced flow-independent dark-blood technique for the evaluation of myocardial late gadolinium enhancement in patients with myocardial infarction. J Magn Reson Imaging. 2017 05; 45(5):1429-1437.
    View in: PubMed
    Score: 0.026
  86. Low contrast medium-volume third-generation dual-source computed tomography angiography for transcatheter aortic valve replacement planning. Eur Radiol. 2017 May; 27(5):1944-1953.
    View in: PubMed
    Score: 0.026
  87. Dynamic CT myocardial perfusion imaging. Eur J Radiol. 2016 Oct; 85(10):1893-1899.
    View in: PubMed
    Score: 0.026
  88. Automated tube voltage selection for radiation dose and contrast medium reduction at coronary CT angiography using 3(rd) generation dual-source CT. Eur Radiol. 2016 Oct; 26(10):3608-16.
    View in: PubMed
    Score: 0.025
  89. Semiautomated Global Quantification of Left Ventricular Myocardial Perfusion at Stress Dynamic CT:: Diagnostic Accuracy for Detection of Territorial Myocardial Perfusion Deficits Compared to Visual Assessment. Acad Radiol. 2016 Apr; 23(4):429-37.
    View in: PubMed
    Score: 0.025
  90. Non-Electrocardiogram-Triggered 70-kVp High-Pitch Computed Tomography Angiography of the Whole Aorta With Iterative Reconstruction: Initial Results. J Comput Assist Tomogr. 2016 Jan-Feb; 40(1):109-17.
    View in: PubMed
    Score: 0.025
  91. 70-kVp High-pitch Computed Tomography Pulmonary Angiography with 40 mL Contrast Agent: Initial Experience. Acad Radiol. 2015 Dec; 22(12):1562-70.
    View in: PubMed
    Score: 0.024
  92. Image quality, radiation dose, and diagnostic accuracy of prospectively ECG-triggered high-pitch coronary CT angiography at 70?kVp in a clinical setting: comparison with invasive coronary angiography. Eur Radiol. 2016 Mar; 26(3):797-806.
    View in: PubMed
    Score: 0.024
  93. Application of an Advanced Image-Based Virtual Monoenergetic Reconstruction of Dual Source Dual-Energy CT Data at Low keV Increases Image Quality for Routine Pancreas Imaging. J Comput Assist Tomogr. 2015 Sep-Oct; 39(5):716-20.
    View in: PubMed
    Score: 0.024
  94. A non-contrast self-navigated 3-dimensional MR technique for aortic root and vascular access route assessment in the context of transcatheter aortic valve replacement: proof of concept. Eur Radiol. 2016 Apr; 26(4):951-8.
    View in: PubMed
    Score: 0.024
  95. Performance of Automated Software in the Assessment of Segmental Left Ventricular Function in Cardiac CT: Comparison with Cardiac Magnetic Resonance. Eur Radiol. 2015 Dec; 25(12):3560-6.
    View in: PubMed
    Score: 0.023
  96. Seventy-Peak Kilovoltage High-Pitch Thoracic Aortic CT Angiography without ECG Gating: Evaluation of Image Quality and Radiation Dose. Acad Radiol. 2015 Jul; 22(7):890-7.
    View in: PubMed
    Score: 0.023
  97. Radiation dose and image quality of 70 kVp cerebral CT angiography with optimized sinogram-affirmed iterative reconstruction: comparison with 120 kVp cerebral CT angiography. Eur Radiol. 2015 May; 25(5):1453-63.
    View in: PubMed
    Score: 0.023
  98. Correlation of cardiac magnetic resonance imaging and histopathology in eosinophilic endomyocarditis. Circ Cardiovasc Imaging. 2015 Jan; 8(1).
    View in: PubMed
    Score: 0.023
  99. Dual-source CT imaging to plan transcatheter aortic valve replacement: accuracy for diagnosis of obstructive coronary artery disease. Radiology. 2015 Apr; 275(1):80-8.
    View in: PubMed
    Score: 0.023
  100. ECG-synchronized CT angiography in 324 consecutive pediatric patients: spectrum of indications and trends in radiation dose. Pediatr Cardiol. 2015 Mar; 36(3):569-78.
    View in: PubMed
    Score: 0.023
  101. Pulmonary embolism and renal vein thrombosis in patients with nephrotic syndrome: prospective evaluation of prevalence and risk factors with CT. Radiology. 2014 Dec; 273(3):897-906.
    View in: PubMed
    Score: 0.022
  102. Reduced radiation dose and improved image quality at cardiovascular CT angiography by automated attenuation-based tube voltage selection: intra-individual comparison. Eur Radiol. 2014 Nov; 24(11):2677-84.
    View in: PubMed
    Score: 0.022
  103. Incremental value of pharmacological stress cardiac dual-energy CT over coronary CT angiography alone for the assessment of coronary artery disease in a high-risk population. AJR Am J Roentgenol. 2014 Jul; 203(1):W70-7.
    View in: PubMed
    Score: 0.022
  104. Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system. Radiology. 2014 Nov; 273(2):373-82.
    View in: PubMed
    Score: 0.022
  105. Global quantification of left ventricular myocardial perfusion at dynamic CT: feasibility in a multicenter patient population. AJR Am J Roentgenol. 2014 Aug; 203(2):W174-80.
    View in: PubMed
    Score: 0.022
  106. Low tube voltage and low contrast material volume cerebral CT angiography. Eur Radiol. 2014 Jul; 24(7):1677-85.
    View in: PubMed
    Score: 0.022
  107. Feasibility of prospectively ECG-triggered high-pitch coronary CT angiography with 30 mL iodinated contrast agent at 70 kVp: initial experience. Eur Radiol. 2014 Jul; 24(7):1537-46.
    View in: PubMed
    Score: 0.022
  108. Reproducibility of noncalcified coronary artery plaque burden quantification from coronary CT angiography across different image analysis platforms. AJR Am J Roentgenol. 2014 Jan; 202(1):W43-9.
    View in: PubMed
    Score: 0.021
  109. Prevalence and types of coronary to pulmonary artery fistula in a Chinese population at dual-source CT coronary angiography. Acta Radiol. 2014 Nov; 55(9):1031-9.
    View in: PubMed
    Score: 0.021
  110. First-arterial-pass dual-energy CT for assessment of myocardial blood supply: do we need rest, stress, and delayed acquisition? Comparison with SPECT. Radiology. 2014 Mar; 270(3):708-16.
    View in: PubMed
    Score: 0.021
  111. Dual-energy CT based vascular iodine analysis improves sensitivity for peripheral pulmonary artery thrombus detection: an experimental study in canines. Eur J Radiol. 2013 Dec; 82(12):2270-8.
    View in: PubMed
    Score: 0.021
  112. Impact of iodine delivery rate with varying flow rates on image quality in dual-energy CT of patients with suspected pulmonary embolism. Acad Radiol. 2013 Aug; 20(8):962-71.
    View in: PubMed
    Score: 0.021
  113. Progression of arterial stiffness and coronary atherosclerosis: longitudinal evaluation by cardiac CT. AJR Am J Roentgenol. 2013 Apr; 200(4):798-804.
    View in: PubMed
    Score: 0.020
  114. Radiation dose and image quality at high-pitch CT angiography of the aorta: intraindividual and interindividual comparisons with conventional CT angiography. AJR Am J Roentgenol. 2012 Dec; 199(6):1402-9.
    View in: PubMed
    Score: 0.020
  115. CT coronary angiography: image quality with sinogram-affirmed iterative reconstruction compared with filtered back-projection. Clin Radiol. 2013 Mar; 68(3):272-8.
    View in: PubMed
    Score: 0.020
  116. Incremental prognostic value of different components of coronary atherosclerotic plaque at cardiac CT angiography beyond coronary calcification in patients with acute chest pain. Radiology. 2012 Sep; 264(3):679-90.
    View in: PubMed
    Score: 0.019
  117. CT evaluation of coronary artery stents with iterative image reconstruction: improvements in image quality and potential for radiation dose reduction. Eur Radiol. 2013 Jan; 23(1):125-32.
    View in: PubMed
    Score: 0.019
  118. Aortoiliac CT angiography for planning transcutaneous aortic valve implantation: aortic root anatomy and frequency of clinically significant incidental findings. AJR Am J Roentgenol. 2012 Apr; 198(4):939-45.
    View in: PubMed
    Score: 0.019
  119. Adenosine-stress dynamic myocardial perfusion imaging with second-generation dual-source CT: comparison with conventional catheter coronary angiography and SPECT nuclear myocardial perfusion imaging. AJR Am J Roentgenol. 2012 Mar; 198(3):521-9.
    View in: PubMed
    Score: 0.019
  120. 64-slice multidetector-row computed tomography in the diagnosis of coronary artery disease: interobserver agreement among radiologists with varied levels of experience on a per-patient and per-segment basis. J Thorac Imaging. 2012 Jan; 27(1):29-35.
    View in: PubMed
    Score: 0.019
  121. Optimization of contrast material delivery for dual-energy computed tomography pulmonary angiography in patients with suspected pulmonary embolism. Invest Radiol. 2012 Jan; 47(1):78-84.
    View in: PubMed
    Score: 0.019
  122. Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors: is iodine-related attenuation a potential indicator of tumor response? Invest Radiol. 2012 Jan; 47(1):65-70.
    View in: PubMed
    Score: 0.019
  123. Expert opinion: Dual energy CT: most and least relevant cardiopulmonary imaging applications. J Thorac Imaging. 2012 Jan; 27(1):6.
    View in: PubMed
    Score: 0.019
  124. Dual energy CT for the assessment of reperfused chronic infarction - a feasibility study in a porcine model. Acta Radiol. 2011 Oct 01; 52(8):834-9.
    View in: PubMed
    Score: 0.018
  125. Dual-energy computed tomography for the detection of late enhancement in reperfused chronic infarction: a comparison to magnetic resonance imaging and histopathology in a porcine model. Invest Radiol. 2011 Jul; 46(7):450-6.
    View in: PubMed
    Score: 0.018
  126. Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology. 2011 Aug; 260(2):390-9.
    View in: PubMed
    Score: 0.018
  127. Coronary atherosclerosis in African American and white patients with acute chest pain: characterization with coronary CT angiography. Radiology. 2011 Aug; 260(2):373-80.
    View in: PubMed
    Score: 0.018
  128. Accuracy of coronary artery stenosis detection with CT versus conventional coronary angiography compared with composite findings from both tests as an enhanced reference standard. Eur Radiol. 2011 Sep; 21(9):1895-903.
    View in: PubMed
    Score: 0.018
  129. Dual-energy computed tomography for integrative imaging of coronary artery disease: principles and clinical applications. Semin Ultrasound CT MR. 2010 Aug; 31(4):276-91.
    View in: PubMed
    Score: 0.017
  130. Reproducibility of CT signs of right ventricular dysfunction in acute pulmonary embolism. AJR Am J Roentgenol. 2010 Jun; 194(6):1500-6.
    View in: PubMed
    Score: 0.017
  131. Chest CT assessment following thrombolysis or surgical embolectomy for acute pulmonary embolism. Vasc Med. 2005 May; 10(2):85-9.
    View in: PubMed
    Score: 0.012
  132. Approaches to CT perfusion imaging in pulmonary embolism. Semin Roentgenol. 2005 Jan; 40(1):64-73.
    View in: PubMed
    Score: 0.011
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.