Connection

Steven Kautz to Aged

This is a "connection" page, showing publications Steven Kautz has written about Aged.
Connection Strength

0.847
  1. Altered muscle activation patterns (AMAP): an analytical tool to compare muscle activity patterns of hemiparetic gait with a normative profile. J Neuroeng Rehabil. 2019 01 31; 16(1):21.
    View in: PubMed
    Score: 0.056
  2. Foot placement control and gait instability among people with stroke. J Rehabil Res Dev. 2015; 52(5):577-90.
    View in: PubMed
    Score: 0.042
  3. Locomotor rehabilitation of individuals with chronic stroke: difference between responders and nonresponders. Arch Phys Med Rehabil. 2013 May; 94(5):856-62.
    View in: PubMed
    Score: 0.036
  4. Coordination of the non-paretic leg during hemiparetic gait: expected and novel compensatory patterns. Clin Biomech (Bristol, Avon). 2012 Dec; 27(10):1023-30.
    View in: PubMed
    Score: 0.036
  5. Quantifiable patterns of limb loading and unloading during hemiparetic gait: Relation to kinetic and kinematic parameters. J Rehabil Res Dev. 2012; 49(9):1293-304.
    View in: PubMed
    Score: 0.034
  6. Comparison of motor control deficits during treadmill and overground walking poststroke. Neurorehabil Neural Repair. 2011 Oct; 25(8):756-65.
    View in: PubMed
    Score: 0.033
  7. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol. 2010 Feb; 103(2):844-57.
    View in: PubMed
    Score: 0.029
  8. Evaluation of abnormal synergy patterns poststroke: relationship of the Fugl-Meyer Assessment to hemiparetic locomotion. Neurorehabil Neural Repair. 2010 May; 24(4):328-37.
    View in: PubMed
    Score: 0.029
  9. Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke. Gait Posture. 2009 Apr; 29(3):408-14.
    View in: PubMed
    Score: 0.027
  10. Validation of a speed-based classification system using quantitative measures of walking performance poststroke. Neurorehabil Neural Repair. 2008 Nov-Dec; 22(6):672-5.
    View in: PubMed
    Score: 0.027
  11. Effects of stroke severity and training duration on locomotor recovery after stroke: a pilot study. Neurorehabil Neural Repair. 2007 Mar-Apr; 21(2):137-51.
    View in: PubMed
    Score: 0.024
  12. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch Phys Med Rehabil. 2007 Jan; 88(1):43-9.
    View in: PubMed
    Score: 0.024
  13. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke. 2006 Mar; 37(3):872-6.
    View in: PubMed
    Score: 0.023
  14. Does unilateral pedaling activate a rhythmic locomotor pattern in the nonpedaling leg in post-stroke hemiparesis? J Neurophysiol. 2006 May; 95(5):3154-63.
    View in: PubMed
    Score: 0.023
  15. Coordination of hemiparetic locomotion after stroke rehabilitation. Neurorehabil Neural Repair. 2005 Sep; 19(3):250-8.
    View in: PubMed
    Score: 0.022
  16. Interlimb influences on paretic leg function in poststroke hemiparesis. J Neurophysiol. 2005 May; 93(5):2460-73.
    View in: PubMed
    Score: 0.021
  17. Rate of isometric knee extension strength development and walking speed after stroke. J Rehabil Res Dev. 2002 Nov-Dec; 39(6):651-7.
    View in: PubMed
    Score: 0.018
  18. Paired inhibitory stimulation and gait training modulates supplemental motor area connectivity in freezing of gait. Parkinsonism Relat Disord. 2021 07; 88:28-33.
    View in: PubMed
    Score: 0.016
  19. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. Lancet. 2021 04 24; 397(10284):1545-1553.
    View in: PubMed
    Score: 0.016
  20. Measurement Precision and Efficiency of Computerized Adaptive Testing for the Activities-specific Balance Confidence Scale in People With Stroke. Phys Ther. 2021 04 04; 101(4).
    View in: PubMed
    Score: 0.016
  21. The effect of time since stroke, gender, age, and lesion size on thalamus volume in chronic stroke: a pilot study. Sci Rep. 2020 11 24; 10(1):20488.
    View in: PubMed
    Score: 0.016
  22. Gait asymmetry pattern following stroke determines acute response to locomotor task. Gait Posture. 2020 03; 77:300-307.
    View in: PubMed
    Score: 0.015
  23. Speed-dependent reductions of force output in people with poststroke hemiparesis. Phys Ther. 1999 Oct; 79(10):919-30.
    View in: PubMed
    Score: 0.015
  24. Muscle contributions to mediolateral and anteroposterior foot placement during walking. J Biomech. 2019 Oct 11; 95:109310.
    View in: PubMed
    Score: 0.014
  25. Increased workload enhances force output during pedaling exercise in persons with poststroke hemiplegia. Stroke. 1998 Mar; 29(3):598-606.
    View in: PubMed
    Score: 0.013
  26. Relationships between timing of muscle excitation and impaired motor performance during cyclical lower extremity movement in post-stroke hemiplegia. Brain. 1998 Mar; 121 ( Pt 3):515-26.
    View in: PubMed
    Score: 0.013
  27. EMG synchrony to assess impaired corticomotor control of locomotion after stroke. J Electromyogr Kinesiol. 2017 Dec; 37:35-40.
    View in: PubMed
    Score: 0.013
  28. Diffusional Kurtosis Imaging and Motor Outcome in Acute Ischemic Stroke. AJNR Am J Neuroradiol. 2017 Jul; 38(7):1328-1334.
    View in: PubMed
    Score: 0.012
  29. Safety and tolerability of transcranial direct current stimulation to stroke patients - A phase I current escalation study. Brain Stimul. 2017 May - Jun; 10(3):553-559.
    View in: PubMed
    Score: 0.012
  30. Correlations between measures of dynamic balance in individuals with post-stroke hemiparesis. J Biomech. 2016 Feb 08; 49(3):396-400.
    View in: PubMed
    Score: 0.011
  31. Dimensionality and Item-Difficulty Hierarchy of the Lower Extremity Fugl-Meyer Assessment in Individuals With Subacute and Chronic Stroke. Arch Phys Med Rehabil. 2016 Apr; 97(4):582-589.e2.
    View in: PubMed
    Score: 0.011
  32. Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes. Ann Neurol. 2015 Dec; 78(6):860-70.
    View in: PubMed
    Score: 0.011
  33. Transcranial Direct Current Stimulation Post-Stroke Upper Extremity Motor Recovery Studies Exhibit a Dose-Response Relationship. Brain Stimul. 2016 Jan-Feb; 9(1):16-26.
    View in: PubMed
    Score: 0.011
  34. Long-Term Follow-up to a Randomized Controlled Trial Comparing Peroneal Nerve Functional Electrical Stimulation to an Ankle Foot Orthosis for Patients With Chronic Stroke. Neurorehabil Neural Repair. 2015 Nov-Dec; 29(10):911-22.
    View in: PubMed
    Score: 0.011
  35. Persistent racial disparity in stroke hospitalization and economic impact in young adults in the buckle of stroke belt. Stroke. 2014 Jul; 45(7):1932-8.
    View in: PubMed
    Score: 0.010
  36. Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis. Clin Biomech (Bristol, Avon). 2014 Aug; 29(7):780-6.
    View in: PubMed
    Score: 0.010
  37. The effects of peroneal nerve functional electrical stimulation versus ankle-foot orthosis in patients with chronic stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2014 Sep; 28(7):688-97.
    View in: PubMed
    Score: 0.010
  38. Rehabilitating walking speed poststroke with treadmill-based interventions: a systematic review of randomized controlled trials. Neurorehabil Neural Repair. 2013 Oct; 27(8):709-21.
    View in: PubMed
    Score: 0.009
  39. Synchronous EMG activity in the piper frequency band reveals the corticospinal demand of walking tasks. Ann Biomed Eng. 2013 Aug; 41(8):1778-86.
    View in: PubMed
    Score: 0.009
  40. The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait Posture. 2013 Jul; 38(3):511-7.
    View in: PubMed
    Score: 0.009
  41. Biomechanical variables related to walking performance 6-months following post-stroke rehabilitation. Clin Biomech (Bristol, Avon). 2012 Dec; 27(10):1017-22.
    View in: PubMed
    Score: 0.009
  42. Muscle work is increased in pre-swing during hemiparetic walking. Clin Biomech (Bristol, Avon). 2011 Oct; 26(8):859-66.
    View in: PubMed
    Score: 0.008
  43. Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture. 2011 Apr; 33(4):538-43.
    View in: PubMed
    Score: 0.008
  44. Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking. Gait Posture. 2010 Oct; 32(4):451-6.
    View in: PubMed
    Score: 0.008
  45. Effects of trunk restraint combined with intensive task practice on poststroke upper extremity reach and function: a pilot study. Neurorehabil Neural Repair. 2009 Jan; 23(1):78-91.
    View in: PubMed
    Score: 0.007
  46. Resistance training and locomotor recovery after incomplete spinal cord injury: a case series. Spinal Cord. 2007 Jul; 45(7):522-30.
    View in: PubMed
    Score: 0.006
  47. Key characteristics of walking correlate with bone density in individuals with chronic stroke. J Rehabil Res Dev. 2005 Nov-Dec; 42(6):761-8.
    View in: PubMed
    Score: 0.006
  48. Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J Biomech. 2006; 39(10):1769-77.
    View in: PubMed
    Score: 0.005
  49. Muscle activity adapts to anti-gravity posture during pedalling in persons with post-stroke hemiplegia. Brain. 1997 May; 120 ( Pt 5):825-37.
    View in: PubMed
    Score: 0.003
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.