Connection

Steven Kautz to Leg

This is a "connection" page, showing publications Steven Kautz has written about Leg.
Connection Strength

2.859
Leg
  1. Locomotor Adaptability Task Promotes Intense and Task-Appropriate Output From the Paretic Leg During Walking. Arch Phys Med Rehabil. 2016 Mar; 97(3):493-6.
    View in: PubMed
    Score: 0.462
  2. Coordination of the non-paretic leg during hemiparetic gait: expected and novel compensatory patterns. Clin Biomech (Bristol, Avon). 2012 Dec; 27(10):1023-30.
    View in: PubMed
    Score: 0.373
  3. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking. Arch Phys Med Rehabil. 2007 Sep; 88(9):1127-35.
    View in: PubMed
    Score: 0.263
  4. Does unilateral pedaling activate a rhythmic locomotor pattern in the nonpedaling leg in post-stroke hemiparesis? J Neurophysiol. 2006 May; 95(5):3154-63.
    View in: PubMed
    Score: 0.236
  5. Interlimb influences on paretic leg function in poststroke hemiparesis. J Neurophysiol. 2005 May; 93(5):2460-73.
    View in: PubMed
    Score: 0.218
  6. Muscle contributions to pre-swing biomechanical tasks influence swing leg mechanics in individuals post-stroke during walking. J Neuroeng Rehabil. 2022 06 03; 19(1):55.
    View in: PubMed
    Score: 0.183
  7. Speed-dependent reductions of force output in people with poststroke hemiparesis. Phys Ther. 1999 Oct; 79(10):919-30.
    View in: PubMed
    Score: 0.152
  8. Relationships between timing of muscle excitation and impaired motor performance during cyclical lower extremity movement in post-stroke hemiplegia. Brain. 1998 Mar; 121 ( Pt 3):515-26.
    View in: PubMed
    Score: 0.136
  9. Dynamic optimization analysis for equipment setup problems in endurance cycling. J Biomech. 1995 Nov; 28(11):1391-401.
    View in: PubMed
    Score: 0.116
  10. Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking. Gait Posture. 2010 Oct; 32(4):451-6.
    View in: PubMed
    Score: 0.080
  11. All joint moments significantly contribute to trunk angular acceleration. J Biomech. 2010 Sep 17; 43(13):2648-52.
    View in: PubMed
    Score: 0.080
  12. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol. 2010 Feb; 103(2):844-57.
    View in: PubMed
    Score: 0.077
  13. Evaluation of abnormal synergy patterns poststroke: relationship of the Fugl-Meyer Assessment to hemiparetic locomotion. Neurorehabil Neural Repair. 2010 May; 24(4):328-37.
    View in: PubMed
    Score: 0.076
  14. Muscle force redistributes segmental power for body progression during walking. Gait Posture. 2004 Apr; 19(2):194-205.
    View in: PubMed
    Score: 0.052
  15. Contralateral movement and extensor force generation alter flexion phase muscle coordination in pedaling. J Neurophysiol. 2000 Jun; 83(6):3351-65.
    View in: PubMed
    Score: 0.040
  16. Muscle contributions to specific biomechanical functions do not change in forward versus backward pedaling. J Biomech. 2000 Feb; 33(2):155-64.
    View in: PubMed
    Score: 0.039
  17. Phase reversal of biomechanical functions and muscle activity in backward pedaling. J Neurophysiol. 1999 Feb; 81(2):544-51.
    View in: PubMed
    Score: 0.036
  18. The effect of pedaling rate on coordination in cycling. J Biomech. 1997 Oct; 30(10):1051-8.
    View in: PubMed
    Score: 0.033
  19. Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis. Clin Biomech (Bristol, Avon). 2014 Aug; 29(7):780-6.
    View in: PubMed
    Score: 0.026
  20. The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance. Clin Biomech (Bristol, Avon). 2013 Jul; 28(6):697-704.
    View in: PubMed
    Score: 0.025
  21. Synchronous EMG activity in the piper frequency band reveals the corticospinal demand of walking tasks. Ann Biomed Eng. 2013 Aug; 41(8):1778-86.
    View in: PubMed
    Score: 0.024
  22. A theoretical basis for interpreting the force applied to the pedal in cycling. J Biomech. 1993 Feb; 26(2):155-65.
    View in: PubMed
    Score: 0.024
  23. Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture. 2011 Apr; 33(4):538-43.
    View in: PubMed
    Score: 0.021
  24. Relationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis. Clin Biomech (Bristol, Avon). 2011 Jun; 26(5):509-15.
    View in: PubMed
    Score: 0.021
  25. An angular velocity profile in cycling derived from mechanical energy analysis. J Biomech. 1991; 24(7):577-86.
    View in: PubMed
    Score: 0.021
  26. Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking. J Biomech. 2010 Aug 26; 43(12):2348-55.
    View in: PubMed
    Score: 0.020
  27. Simulation analysis of muscle activity changes with altered body orientations during pedaling. J Biomech. 2001 Jun; 34(6):749-56.
    View in: PubMed
    Score: 0.011
  28. Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling. J Neurophysiol. 1998 Sep; 80(3):1341-51.
    View in: PubMed
    Score: 0.009
  29. Muscle activity adapts to anti-gravity posture during pedalling in persons with post-stroke hemiplegia. Brain. 1997 May; 120 ( Pt 5):825-37.
    View in: PubMed
    Score: 0.008
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.