Connection

Pal Suranyi to Contrast Media

This is a "connection" page, showing publications Pal Suranyi has written about Contrast Media.
Connection Strength

1.078
  1. Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging. Eur Radiol. 2017 Aug; 27(8):3235-3243.
    View in: PubMed
    Score: 0.423
  2. In Vitro Longitudinal Relaxivity Profile of Gd(ABE-DTTA), an Investigational Magnetic Resonance Imaging Contrast Agent. PLoS One. 2016; 11(2):e0149260.
    View in: PubMed
    Score: 0.099
  3. Myocardial Late Gadolinium Enhancement: Accuracy of T1 Mapping-based Synthetic Inversion-Recovery Imaging. Radiology. 2016 Feb; 278(2):374-82.
    View in: PubMed
    Score: 0.096
  4. Acute infarct selective MRI contrast agent. Int J Cardiovasc Imaging. 2012 Feb; 28(2):285-93.
    View in: PubMed
    Score: 0.070
  5. Differentiation of acute and four-week old myocardial infarct with Gd(ABE-DTTA)-enhanced CMR. J Cardiovasc Magn Reson. 2010 Apr 07; 12:22.
    View in: PubMed
    Score: 0.066
  6. Impact of right ventricular contrast attenuation on the accuracy of right ventricular function analysis at cardiac multi-detector-row CT. Eur J Radiol. 2010 Mar; 73(3):560-5.
    View in: PubMed
    Score: 0.061
  7. Right heart: split-bolus injection of diluted contrast medium for visualization at coronary CT angiography. Radiology. 2008 May; 247(2):356-64.
    View in: PubMed
    Score: 0.058
  8. Diagnostic accuracy of non-contrast quiescent-interval slice-selective (QISS) MRA combined with MRI-based vascular calcification visualization for the assessment of arterial stenosis in patients with lower extremity peripheral artery disease. Eur Radiol. 2021 May; 31(5):2778-2787.
    View in: PubMed
    Score: 0.034
  9. Quantitative inversion time prescription for myocardial late gadolinium enhancement using T1-mapping-based synthetic inversion recovery imaging: reducing subjectivity in the estimation of inversion time. Int J Cardiovasc Imaging. 2018 Jun; 34(6):921-929.
    View in: PubMed
    Score: 0.028
  10. Accuracy of Noncontrast Quiescent-Interval Single-Shot Lower Extremity MR Angiography Versus CT?Angiography for Diagnosis of Peripheral Artery Disease: Comparison With Digital Subtraction Angiography. JACC Cardiovasc Imaging. 2017 10; 10(10 Pt A):1116-1124.
    View in: PubMed
    Score: 0.026
  11. T(Rho) and magnetization transfer and INvErsion recovery (TRAMINER)-prepared imaging: A novel contrast-enhanced flow-independent dark-blood technique for the evaluation of myocardial late gadolinium enhancement in patients with myocardial infarction. J Magn Reson Imaging. 2017 05; 45(5):1429-1437.
    View in: PubMed
    Score: 0.026
  12. Application of an Advanced Image-Based Virtual Monoenergetic Reconstruction of Dual Source Dual-Energy CT Data at Low keV Increases Image Quality for Routine Pancreas Imaging. J Comput Assist Tomogr. 2015 Sep-Oct; 39(5):716-20.
    View in: PubMed
    Score: 0.024
  13. Correlation of cardiac magnetic resonance imaging and histopathology in eosinophilic endomyocarditis. Circ Cardiovasc Imaging. 2015 Jan; 8(1).
    View in: PubMed
    Score: 0.023
  14. Virtual in vivo biopsy map of early prostate neoplasm in TRAMP mice by MRI. Prostate. 2009 Apr 01; 69(5):449-58.
    View in: PubMed
    Score: 0.015
  15. Iso-osmolality versus low-osmolality iodinated contrast medium at intravenous contrast-enhanced CT: effect on kidney function. Radiology. 2008 Jul; 248(1):97-105.
    View in: PubMed
    Score: 0.015
  16. In vivo R1-enhancement mapping of canine myocardium using ceMRI with Gd(ABE-DTTA) in an acute ischemia-reperfusion model. J Magn Reson Imaging. 2006 Sep; 24(3):571-9.
    View in: PubMed
    Score: 0.013
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.