Connection

Akos Varga-Szemes to Humans

This is a "connection" page, showing publications Akos Varga-Szemes has written about Humans.
Connection Strength

1.308
  1. Editorial for "Pediatric Cardiac Magnetic Resonance Reference Values for Biventricular Volumes Derived From Different Contouring Techniques". J Magn Reson Imaging. 2023 04; 57(4):1287-1288.
    View in: PubMed
    Score: 0.031
  2. Computed tomographic assessment of right ventricular long axis strain for prognosis after transcatheter aortic valve replacement. Eur J Radiol. 2022 Apr; 149:110212.
    View in: PubMed
    Score: 0.030
  3. Visualization of Concurrent Epicardial and Microvascular Coronary Artery Disease in a Patient with Systemic Lupus Erythematosus by Magnetic Resonance Imaging. Top Magn Reson Imaging. 2022 Feb 01; 31(1):3-8.
    View in: PubMed
    Score: 0.030
  4. Another step to bring artificial intelligence closer to clinical application - noise reduction for late gadolinium enhancement. Int J Cardiol. 2021 12 15; 345:150-151.
    View in: PubMed
    Score: 0.030
  5. Quiescent-Interval Slice-Selective MRA Accurately Estimates Intravascular Stent Dimensions Prior to Intervention in Patients With Peripheral Artery Disease. J Magn Reson Imaging. 2022 01; 55(1):246-254.
    View in: PubMed
    Score: 0.029
  6. Comparison of 2D and 3D quiescent-interval slice-selective non-contrast MR angiography in patients with peripheral artery disease. MAGMA. 2021 Oct; 34(5):649-658.
    View in: PubMed
    Score: 0.029
  7. Imaging myocardial ischemia: from emerging techniques to state-of-the-art. Eur Radiol Exp. 2021 03 25; 5(1):13.
    View in: PubMed
    Score: 0.028
  8. Measurement accuracy of prototype non-contrast, compressed sensing-based, respiratory motion-resolved whole heart cardiovascular magnetic resonance angiography for the assessment of thoracic aortic dilatation: comparison with computed tomography angiography. J Cardiovasc Magn Reson. 2021 02 08; 23(1):7.
    View in: PubMed
    Score: 0.028
  9. Coronary plaque assessment of Vasodilative capacity by CT angiography effectively estimates fractional flow reserve. Int J Cardiol. 2021 05 15; 331:307-315.
    View in: PubMed
    Score: 0.028
  10. Diagnostic accuracy of non-contrast quiescent-interval slice-selective (QISS) MRA combined with MRI-based vascular calcification visualization for the assessment of arterial stenosis in patients with lower extremity peripheral artery disease. Eur Radiol. 2021 May; 31(5):2778-2787.
    View in: PubMed
    Score: 0.028
  11. Imaging in Cardiothoracic Oncologic Therapy. J Thorac Imaging. 2020 01; 35(1):2-3.
    View in: PubMed
    Score: 0.026
  12. Free-Breathing Fast Low-Angle Shot Quiescent-Interval Slice-Selective Magnetic Resonance Angiography for Improved Detection of Vascular Stenoses in the Pelvis and Abdomen: Technical Development. Invest Radiol. 2019 12; 54(12):752-756.
    View in: PubMed
    Score: 0.026
  13. Correcting versus resolving respiratory motion in free-breathing whole-heart MRA: a comparison in patients with thoracic aortic disease. Eur Radiol Exp. 2019 07 31; 3(1):29.
    View in: PubMed
    Score: 0.025
  14. Cardiac Magnetic Resonance T1-Mapping of the Myocardium: Technical Background and Clinical Relevance. J Thorac Imaging. 2018 Mar; 33(2):71-80.
    View in: PubMed
    Score: 0.023
  15. Quantitative inversion time prescription for myocardial late gadolinium enhancement using T1-mapping-based synthetic inversion recovery imaging: reducing subjectivity in the estimation of inversion time. Int J Cardiovasc Imaging. 2018 Jun; 34(6):921-929.
    View in: PubMed
    Score: 0.023
  16. Technical Feasibility of a Combined Noncontrast Magnetic Resonance Protocol for Preoperative Transcatheter Aortic Valve Replacement Evaluation. J Thorac Imaging. 2018 Jan; 33(1):60-67.
    View in: PubMed
    Score: 0.023
  17. Accuracy of Noncontrast Quiescent-Interval Single-Shot Lower Extremity MR Angiography Versus CT?Angiography for Diagnosis of Peripheral Artery Disease: Comparison With Digital Subtraction Angiography. JACC Cardiovasc Imaging. 2017 10; 10(10 Pt A):1116-1124.
    View in: PubMed
    Score: 0.021
  18. Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging. Eur Radiol. 2017 Aug; 27(8):3235-3243.
    View in: PubMed
    Score: 0.021
  19. T(Rho) and magnetization transfer and INvErsion recovery (TRAMINER)-prepared imaging: A novel contrast-enhanced flow-independent dark-blood technique for the evaluation of myocardial late gadolinium enhancement in patients with myocardial infarction. J Magn Reson Imaging. 2017 05; 45(5):1429-1437.
    View in: PubMed
    Score: 0.021
  20. Clinical feasibility of a myocardial signal intensity threshold-based semi-automated cardiac magnetic resonance segmentation method. Eur Radiol. 2016 May; 26(5):1503-11.
    View in: PubMed
    Score: 0.019
  21. Myocardial Late Gadolinium Enhancement: Accuracy of T1 Mapping-based Synthetic Inversion-Recovery Imaging. Radiology. 2016 Feb; 278(2):374-82.
    View in: PubMed
    Score: 0.019
  22. A Rare Case of Intrapulmonary Ewing Sarcoma Presenting with Left Atrial Tumor Thrombus. J Thorac Oncol. 2015 Jul; 10(7):1120-2.
    View in: PubMed
    Score: 0.019
  23. CT myocardial perfusion imaging. AJR Am J Roentgenol. 2015 Mar; 204(3):487-97.
    View in: PubMed
    Score: 0.019
  24. Correlation of cardiac magnetic resonance imaging and histopathology in eosinophilic endomyocarditis. Circ Cardiovasc Imaging. 2015 Jan; 8(1).
    View in: PubMed
    Score: 0.019
  25. Invasive cardiac aspergillosis with postinfectious left ventricular aneurysm in a patient with acute myeloid leukemia. Can J Cardiol. 2014 Nov; 30(11):1463.e1-2.
    View in: PubMed
    Score: 0.018
  26. Cardiac magnetic resonance for prophylactic implantable-cardioverter defibrillator therapy international study: prognostic value of cardiac magnetic resonance-derived right ventricular parameters substudy. Eur Heart J Cardiovasc Imaging. 2023 Mar 21; 24(4):472-482.
    View in: PubMed
    Score: 0.008
  27. Ultra-high resolution photon-counting coronary CT angiography improves coronary stenosis quantification over a wide range of heart rates - A dynamic phantom study. Eur J Radiol. 2023 Apr; 161:110746.
    View in: PubMed
    Score: 0.008
  28. CNN-based evaluation of bone density improves diagnostic performance to detect osteopenia and osteoporosis in patients with non-contrast chest CT examinations. Eur J Radiol. 2023 Apr; 161:110728.
    View in: PubMed
    Score: 0.008
  29. Stent imaging on a clinical dual-source photon-counting detector CT system-impact of luminal attenuation and sharp kernels on lumen visibility. Eur Radiol. 2023 Apr; 33(4):2469-2477.
    View in: PubMed
    Score: 0.008
  30. Left atrial strain correlates with severity of cardiac involvement in Anderson-Fabry disease. Eur Radiol. 2023 Mar; 33(3):2039-2051.
    View in: PubMed
    Score: 0.008
  31. Biventricular strain assessment indicates progressive impairment of myocardial contractility in phenotypically negative patients with Fabry's disease. Eur J Radiol. 2022 Oct; 155:110471.
    View in: PubMed
    Score: 0.008
  32. Impact of Artificial Intelligence Assistance on Chest CT Interpretation Times: A Prospective Randomized Study. AJR Am J Roentgenol. 2022 Nov; 219(5):743-751.
    View in: PubMed
    Score: 0.008
  33. CT in Transcatheter-delivered Treatment of Valvular Heart Disease. Radiology. 2022 07; 304(1):4-17.
    View in: PubMed
    Score: 0.008
  34. Automated Dual-energy Computed Tomography-based Extracellular Volume Estimation for Myocardial Characterization in Patients With Ischemic and Nonischemic Cardiomyopathy. J Thorac Imaging. 2022 Sep 01; 37(5):307-314.
    View in: PubMed
    Score: 0.008
  35. An Interpretable Chest CT Deep Learning Algorithm for Quantification of COVID-19 Lung Disease and Prediction of Inpatient Morbidity and Mortality. Acad Radiol. 2022 08; 29(8):1178-1188.
    View in: PubMed
    Score: 0.008
  36. Impact of machine-learning-based coronary computed tomography angiography-derived fractional flow reserve on decision-making in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Radiol. 2022 Sep; 32(9):6008-6016.
    View in: PubMed
    Score: 0.008
  37. Coronary Computed Tomography Angiography-Based Calcium Scoring: In Vitro and In Vivo Validation of a Novel Virtual Noniodine Reconstruction Algorithm on a Clinical, First-Generation Dual-Source Photon Counting-Detector System. Invest Radiol. 2022 08 01; 57(8):536-543.
    View in: PubMed
    Score: 0.008
  38. Time-dependent cardiac structural and functional changes after kidney transplantation: a multi-parametric cardiac magnetic resonance study. Eur Radiol. 2022 Aug; 32(8):5265-5275.
    View in: PubMed
    Score: 0.008
  39. Optimization of contrast material administration for coronary CT angiography using a software-based test-bolus evaluation algorithm. Br J Radiol. 2022 May 01; 95(1133):20201456.
    View in: PubMed
    Score: 0.008
  40. Additive value of epicardial adipose tissue quantification to coronary CT angiography-derived plaque characterization and CT fractional flow reserve for the prediction of lesion-specific ischemia. Eur Radiol. 2022 Jun; 32(6):4243-4252.
    View in: PubMed
    Score: 0.008
  41. Prognostic value of epicardial adipose tissue volume in combination with coronary plaque and flow assessment for the prediction of major adverse cardiac events. Eur J Radiol. 2022 Mar; 148:110157.
    View in: PubMed
    Score: 0.008
  42. The Feasibility, Tolerability, Safety, and Accuracy of Low-radiation Dynamic Computed Tomography Myocardial Perfusion Imaging With Regadenoson Compared With Single-photon Emission Computed Tomography. J Thorac Imaging. 2021 Nov 01; 36(6):345-352.
    View in: PubMed
    Score: 0.007
  43. Utility of Functional and Volumetric Left Atrial Parameters Derived From Preprocedural Cardiac CTA in Predicting Mortality After Transcatheter Aortic Valve Replacement. AJR Am J Roentgenol. 2022 03; 218(3):444-452.
    View in: PubMed
    Score: 0.007
  44. In-patient care trends in peripheral artery disease in the German healthcare system over the past decade. Eur Radiol. 2022 Mar; 32(3):1697-1708.
    View in: PubMed
    Score: 0.007
  45. Coronary CT Fractional Flow Reserve before Transcatheter Aortic Valve Replacement: Clinical Outcomes. Radiology. 2022 01; 302(1):50-58.
    View in: PubMed
    Score: 0.007
  46. Right/Left Ventricular Blood Pool T2 Ratio as an Innovative Cardiac MRI Screening Tool for the Identification of Left-to-Right Shunts in Patients With Right Ventricular Disease. J Magn Reson Imaging. 2022 05; 55(5):1452-1458.
    View in: PubMed
    Score: 0.007
  47. CarDiac magnEtic Resonance for prophylactic Implantable-cardioVerter defibrillAtor ThErapy in Non-Ischaemic dilated CardioMyopathy: an international Registry. Europace. 2021 07 18; 23(7):1072-1083.
    View in: PubMed
    Score: 0.007
  48. Spontaneous Iliopsoas Muscle Hemorrhage-Predictors of Associated Mortality. Acad Radiol. 2022 04; 29(4):536-542.
    View in: PubMed
    Score: 0.007
  49. Predictive Value of Cardiac CTA, Cardiac MRI, and Transthoracic Echocardiography for Cardioembolic Stroke Recurrence. AJR Am J Roentgenol. 2021 08; 217(2):336-346.
    View in: PubMed
    Score: 0.007
  50. Compressed sensing acceleration of cardiac cine imaging allows reliable and reproducible assessment of volumetric and functional parameters of the left and right atrium. Eur Radiol. 2021 Oct; 31(10):7219-7230.
    View in: PubMed
    Score: 0.007
  51. Emerging methods for the characterization of ischemic heart disease: ultrafast Doppler angiography, micro-CT, photon-counting CT, novel MRI and PET techniques, and artificial intelligence. Eur Radiol Exp. 2021 03 25; 5(1):12.
    View in: PubMed
    Score: 0.007
  52. Radiomics: The Next Frontier of Cardiac Computed Tomography. Circ Cardiovasc Imaging. 2021 03; 14(3):e011747.
    View in: PubMed
    Score: 0.007
  53. Performance of an Artificial Intelligence-Based Platform Against Clinical Radiology Reports for the Evaluation of Noncontrast Chest CT. Acad Radiol. 2022 02; 29 Suppl 2:S108-S117.
    View in: PubMed
    Score: 0.007
  54. Non-invasive fractional flow reserve (FFRCT) in the evaluation of acute chest pain - Concepts and first experiences. Eur J Radiol. 2021 May; 138:109633.
    View in: PubMed
    Score: 0.007
  55. Different posterior hippocampus and default mode network modulation in young APOE e4 carriers: a functional connectome-informed phenotype longitudinal study. Mol Neurobiol. 2021 Jun; 58(6):2757-2769.
    View in: PubMed
    Score: 0.007
  56. Quantitative analysis of dynamic computed tomography angiography for the detection of endoleaks after abdominal aorta aneurysm endovascular repair: A feasibility study. PLoS One. 2021; 16(1):e0245134.
    View in: PubMed
    Score: 0.007
  57. Evaluating a New Contrast Media Injection System in Coronary CT Angiography. Radiol Technol. 2021 Jan; 92(3):232-239.
    View in: PubMed
    Score: 0.007
  58. Cardiac magnetic resonance imaging features prognostic information in patients with suspected myocardial infarction with non-obstructed coronary arteries. Int J Cardiol. 2021 03 15; 327:223-230.
    View in: PubMed
    Score: 0.007
  59. Automatic coronary calcium scoring in chest CT using a deep neural network in direct comparison with non-contrast cardiac CT: A validation study. Eur J Radiol. 2021 Jan; 134:109428.
    View in: PubMed
    Score: 0.007
  60. Evaluation of a Tube Voltage-Tailored Contrast Medium Injection Protocol for Coronary CT Angiography: Results From the Prospective VOLCANIC Study. AJR Am J Roentgenol. 2020 11; 215(5):1049-1056.
    View in: PubMed
    Score: 0.007
  61. T1 and T2 mapping to detect chronic inflammation in cardiac magnetic resonance imaging in heart failure with reduced ejection fraction. ESC Heart Fail. 2020 10; 7(5):2544-2552.
    View in: PubMed
    Score: 0.007
  62. Myocardial Mass Corrected CMR Feature Tracking-Based Strain Ratios are Different in Pathologies With Increased Myocardial Mass. Acad Radiol. 2022 04; 29 Suppl 4:S40-S48.
    View in: PubMed
    Score: 0.007
  63. A fully automated software platform for structural mitral valve analysis. Eur Radiol. 2020 Dec; 30(12):6528-6536.
    View in: PubMed
    Score: 0.007
  64. Individualized coronary calcium scoring at any tube voltage using a kV-independent reconstruction algorithm. Eur Radiol. 2020 Nov; 30(11):5834-5840.
    View in: PubMed
    Score: 0.007
  65. Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography. J Thorac Imaging. 2020 May; 35 Suppl 1:S49-S57.
    View in: PubMed
    Score: 0.007
  66. Artificial Intelligence-based Fully Automated Per Lobe Segmentation and Emphysema-quantification Based on Chest Computed Tomography Compared With Global Initiative for Chronic Obstructive Lung Disease Severity of Smokers. J Thorac Imaging. 2020 May; 35 Suppl 1:S28-S34.
    View in: PubMed
    Score: 0.007
  67. Machine Learning/Deep Neuronal Network: Routine Application in Chest Computed Tomography and Workflow Considerations. J Thorac Imaging. 2020 May; 35 Suppl 1:S21-S27.
    View in: PubMed
    Score: 0.007
  68. Comparison of Artificial Intelligence-Based Fully Automatic Chest CT Emphysema Quantification to Pulmonary Function Testing. AJR Am J Roentgenol. 2020 05; 214(5):1065-1071.
    View in: PubMed
    Score: 0.007
  69. Low-kV coronary artery calcium scoring with tin filtration using a kV-independent reconstruction algorithm. J Cardiovasc Comput Tomogr. 2020 May - Jun; 14(3):246-250.
    View in: PubMed
    Score: 0.007
  70. Evaluation of a Deep Learning-Based Automated CT Coronary Artery Calcium Scoring Algorithm. JACC Cardiovasc Imaging. 2020 02; 13(2 Pt 1):524-526.
    View in: PubMed
    Score: 0.006
  71. Review of Clinical Applications for Virtual Monoenergetic Dual-Energy CT. Radiology. 2019 11; 293(2):260-271.
    View in: PubMed
    Score: 0.006
  72. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry. JACC Cardiovasc Imaging. 2020 03; 13(3):760-770.
    View in: PubMed
    Score: 0.006
  73. Impact of Coronary Computerized Tomography Angiography-Derived Plaque Quantification and Machine-Learning Computerized Tomography Fractional Flow Reserve on Adverse Cardiac Outcome. Am J Cardiol. 2019 11 01; 124(9):1340-1348.
    View in: PubMed
    Score: 0.006
  74. Automated plaque analysis for the prognostication of major adverse cardiac events. Eur J Radiol. 2019 Jul; 116:76-83.
    View in: PubMed
    Score: 0.006
  75. Modified calcium subtraction in dual-energy CT angiography of the lower extremity runoff: impact on diagnostic accuracy for stenosis detection. Eur Radiol. 2019 Sep; 29(9):4783-4793.
    View in: PubMed
    Score: 0.006
  76. Pediatric Cardiac MR Imaging:: Practical Preoperative Assessment. Magn Reson Imaging Clin N Am. 2019 May; 27(2):243-262.
    View in: PubMed
    Score: 0.006
  77. Iodine quantification based on rest / stress perfusion dual energy CT to differentiate ischemic, infarcted and normal myocardium. Eur J Radiol. 2019 Mar; 112:136-143.
    View in: PubMed
    Score: 0.006
  78. Diagnostic Accuracy of Noncontrast Self-navigated Free-breathing MR Angiography versus CT Angiography: A Prospective Study in Pediatric Patients with Suspected Anomalous Coronary Arteries. Acad Radiol. 2019 10; 26(10):1309-1317.
    View in: PubMed
    Score: 0.006
  79. Coronary CT angiography-derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia. Eur Radiol. 2019 May; 29(5):2378-2387.
    View in: PubMed
    Score: 0.006
  80. Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFRML): Impact of iterative and filtered back projection reconstruction techniques. J Cardiovasc Comput Tomogr. 2019 Nov - Dec; 13(6):331-335.
    View in: PubMed
    Score: 0.006
  81. Feasibility of extracellular volume quantification using dual-energy CT. J Cardiovasc Comput Tomogr. 2019 Jan - Feb; 13(1):81-84.
    View in: PubMed
    Score: 0.006
  82. Multi-observer comparison study between unenhanced quiescent-interval single-shot magnetic resonance angiography and invasive carbon dioxide angiography in patients with peripheral arterial disease and chronic renal insufficiency. Eur J Radiol. 2018 Nov; 108:140-146.
    View in: PubMed
    Score: 0.006
  83. Dual-Energy Computed Tomography in Cardiothoracic Vascular Imaging. Radiol Clin North Am. 2018 Jul; 56(4):521-534.
    View in: PubMed
    Score: 0.006
  84. Dual-energy CT of the heart current and future status. Eur J Radiol. 2018 Aug; 105:110-118.
    View in: PubMed
    Score: 0.006
  85. Current and future applications of CT coronary calcium assessment. Expert Rev Cardiovasc Ther. 2018 Jun; 16(6):441-453.
    View in: PubMed
    Score: 0.006
  86. Non-contrast-enhanced magnetic resonance angiography: a reliable clinical tool for evaluating transplant renal artery stenosis. Eur Radiol. 2018 Oct; 28(10):4195-4204.
    View in: PubMed
    Score: 0.006
  87. A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions. Eur Radiol. 2018 Aug; 28(8):3393-3404.
    View in: PubMed
    Score: 0.006
  88. Beam-hardening in 70-kV Coronary CT angiography: Artifact reduction using an advanced post-processing algorithm. Eur J Radiol. 2018 Apr; 101:111-117.
    View in: PubMed
    Score: 0.006
  89. High-pitch low-voltage CT coronary artery calcium scoring with tin filtration: accuracy and radiation dose reduction. Eur Radiol. 2018 Jul; 28(7):3097-3104.
    View in: PubMed
    Score: 0.006
  90. Diagnostic accuracy of low and high tube voltage coronary CT angiography using an X-ray tube potential-tailored contrast medium injection protocol. Eur Radiol. 2018 May; 28(5):2134-2142.
    View in: PubMed
    Score: 0.006
  91. Re-Establishing Brain Networks in Patients with ESRD after Successful Kidney Transplantation. Clin J Am Soc Nephrol. 2018 01 06; 13(1):109-117.
    View in: PubMed
    Score: 0.006
  92. Coronary Computed Tomographic Angiography-Derived Fractional Flow Reserve for Therapeutic Decision Making. Am J Cardiol. 2017 Dec 15; 120(12):2121-2127.
    View in: PubMed
    Score: 0.006
  93. Coronary artery assessment using self-navigated free-breathing radial whole-heart magnetic resonance angiography in patients with congenital heart disease. Eur Radiol. 2018 Mar; 28(3):1267-1275.
    View in: PubMed
    Score: 0.006
  94. Coronary Computed Tomographic Angiography-Derived Fractional Flow Reserve Based on Machine Learning for Risk Stratification of Non-Culprit Coronary Narrowings in Patients with Acute Coronary Syndrome. Am J Cardiol. 2017 Oct 15; 120(8):1260-1266.
    View in: PubMed
    Score: 0.006
  95. Iterative beam-hardening correction with advanced modeled iterative reconstruction in low voltage CT coronary calcium scoring with tin filtration: Impact on coronary artery calcium quantification and image quality. J Cardiovasc Comput Tomogr. 2017 Sep - Oct; 11(5):354-359.
    View in: PubMed
    Score: 0.006
  96. Imaging in Adult Congenital Heart Disease. J Thorac Imaging. 2017 Jul; 32(4):205-216.
    View in: PubMed
    Score: 0.006
  97. An Overview of Cardiac Computed Tomography in Adults With Congenital Heart Disease. J Thorac Imaging. 2017 Jul; 32(4):258-273.
    View in: PubMed
    Score: 0.006
  98. Lower functional connectivity of default mode network in cognitively normal young adults with mutation of APP, presenilins and APOE e4. Brain Imaging Behav. 2017 Jun; 11(3):818-828.
    View in: PubMed
    Score: 0.005
  99. Cinematic Rendering in CT: A Novel, Lifelike 3D Visualization Technique. AJR Am J Roentgenol. 2017 Aug; 209(2):370-379.
    View in: PubMed
    Score: 0.005
  100. Different Hippocampus Functional Connectivity Patterns in Healthy Young Adults with Mutations of APP/Presenilin-1/2 and APOEe4. Mol Neurobiol. 2018 Apr; 55(4):3439-3450.
    View in: PubMed
    Score: 0.005
  101. CT coronary calcium scoring with tin filtration using iterative beam-hardening calcium correction reconstruction. Eur J Radiol. 2017 Jun; 91:29-34.
    View in: PubMed
    Score: 0.005
  102. Optimization of window settings for standard and advanced virtual monoenergetic imaging in abdominal dual-energy CT angiography. Abdom Radiol (NY). 2017 03; 42(3):772-780.
    View in: PubMed
    Score: 0.005
  103. CT myocardial perfusion: state of the science. Minerva Cardioangiol. 2017 Jun; 65(3):252-264.
    View in: PubMed
    Score: 0.005
  104. Coronary Computed Tomography Angiography-Derived Plaque Quantification in Patients With Acute Coronary?Syndrome. Am J Cardiol. 2017 03 01; 119(5):712-718.
    View in: PubMed
    Score: 0.005
  105. CT angiography for planning transcatheter aortic valve replacement using automated tube voltage selection: Image quality and radiation exposure. Eur J Radiol. 2017 Jan; 86:276-283.
    View in: PubMed
    Score: 0.005
  106. Optimal timing of image acquisition for arterial first pass CT myocardial perfusion imaging. Eur J Radiol. 2017 Jan; 86:227-233.
    View in: PubMed
    Score: 0.005
  107. Accuracy and Radiation Dose Reduction Using Low-Voltage Computed Tomography Coronary Artery Calcium Scoring With Tin Filtration. Am J Cardiol. 2017 02 15; 119(4):675-680.
    View in: PubMed
    Score: 0.005
  108. Correlation and predictive value of aortic root calcification markers with coronary artery calcification and obstructive coronary artery disease. Radiol Med. 2017 Feb; 122(2):113-120.
    View in: PubMed
    Score: 0.005
  109. Intra-individual comparison of CAIPIRINHA VIBE technique with conventional VIBE sequences in contrast-enhanced MRI of focal liver lesions. Eur J Radiol. 2017 Jan; 86:20-25.
    View in: PubMed
    Score: 0.005
  110. Diagnostic accuracy of coronary CT angiography using 3rd-generation dual-source CT and automated tube voltage selection: Clinical application in a non-obese and obese patient population. Eur Radiol. 2017 Jun; 27(6):2298-2308.
    View in: PubMed
    Score: 0.005
  111. Correction Factors for CT Coronary Artery Calcium Scoring Using Advanced Modeled Iterative Reconstruction Instead of Filtered Back Projection. Acad Radiol. 2016 12; 23(12):1480-1489.
    View in: PubMed
    Score: 0.005
  112. Low contrast medium-volume third-generation dual-source computed tomography angiography for transcatheter aortic valve replacement planning. Eur Radiol. 2017 May; 27(5):1944-1953.
    View in: PubMed
    Score: 0.005
  113. Prognostic implications of coronary CT angiography-derived quantitative markers for the prediction of major adverse cardiac events. J Cardiovasc Comput Tomogr. 2016 Nov - Dec; 10(6):458-465.
    View in: PubMed
    Score: 0.005
  114. Dynamic CT myocardial perfusion imaging. Eur J Radiol. 2016 Oct; 85(10):1893-1899.
    View in: PubMed
    Score: 0.005
  115. Coronary CT angiography-derived quantitative markers for predicting in-stent restenosis. J Cardiovasc Comput Tomogr. 2016 Sep-Oct; 10(5):377-83.
    View in: PubMed
    Score: 0.005
  116. Myocardial perfusion imaging with dual energy CT. Eur J Radiol. 2016 Oct; 85(10):1914-1921.
    View in: PubMed
    Score: 0.005
  117. Right Atrial Angiosarcoma Diagnosed by Cardiac Magnetic Resonance Imaging. Am J Med Sci. 2016 Oct; 352(4):435-437.
    View in: PubMed
    Score: 0.005
  118. Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur Radiol. 2017 Feb; 27(2):642-650.
    View in: PubMed
    Score: 0.005
  119. Virtual unenhanced imaging of the liver with third-generation dual-source dual-energy CT and advanced modeled iterative reconstruction. Eur J Radiol. 2016 Jul; 85(7):1257-64.
    View in: PubMed
    Score: 0.005
  120. Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis. J Cardiovasc Comput Tomogr. 2016 May-Jun; 10(3):199-206.
    View in: PubMed
    Score: 0.005
  121. A noise-optimized virtual monochromatic reconstruction algorithm improves stent visualization and diagnostic accuracy for detection of in-stent re-stenosis in lower extremity run-off CT angiography. Eur Radiol. 2016 Dec; 26(12):4380-4389.
    View in: PubMed
    Score: 0.005
  122. Altered Amygdala Resting-State Functional Connectivity in Maintenance Hemodialysis End-Stage Renal Disease Patients with Depressive Mood. Mol Neurobiol. 2017 04; 54(3):2223-2233.
    View in: PubMed
    Score: 0.005
  123. Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison. Eur J Radiol. 2016 May; 85(5):972-8.
    View in: PubMed
    Score: 0.005
  124. Automated tube voltage selection for radiation dose and contrast medium reduction at coronary CT angiography using 3(rd) generation dual-source CT. Eur Radiol. 2016 Oct; 26(10):3608-16.
    View in: PubMed
    Score: 0.005
  125. Semiautomated Global Quantification of Left Ventricular Myocardial Perfusion at Stress Dynamic CT:: Diagnostic Accuracy for Detection of Territorial Myocardial Perfusion Deficits Compared to Visual Assessment. Acad Radiol. 2016 Apr; 23(4):429-37.
    View in: PubMed
    Score: 0.005
  126. Dual-Energy Computed Tomography Angiography of the Lower Extremity Runoff: Impact of Noise-Optimized Virtual Monochromatic Imaging on Image Quality and Diagnostic Accuracy. Invest Radiol. 2016 Feb; 51(2):139-46.
    View in: PubMed
    Score: 0.005
  127. Vascular Imaging Before Transcatheter Aortic Valve Replacement (TAVR): Why and How? Curr Cardiol Rep. 2016 Feb; 18(2):14.
    View in: PubMed
    Score: 0.005
  128. Coronary CT angiography in obese patients using 3(rd) generation dual-source CT: effect of body mass index on image quality. Eur Radiol. 2016 Sep; 26(9):2937-46.
    View in: PubMed
    Score: 0.005
  129. Topological Reorganization of the Default Mode Network in Irritable Bowel Syndrome. Mol Neurobiol. 2016 12; 53(10):6585-6593.
    View in: PubMed
    Score: 0.005
  130. APOE Polymorphism Affects Brain Default Mode Network in Healthy Young Adults: A STROBE Article. Medicine (Baltimore). 2015 Dec; 94(52):e1734.
    View in: PubMed
    Score: 0.005
  131. Approaches to ultra-low radiation dose coronary artery calcium scoring based on 3rd generation dual-source CT: A phantom study. Eur J Radiol. 2016 Jan; 85(1):39-47.
    View in: PubMed
    Score: 0.005
  132. Transcatheter Aortic Valve Replacement: Imaging Techniques for Aortic Root Sizing. J Thorac Imaging. 2015 Nov; 30(6):349-58.
    View in: PubMed
    Score: 0.005
  133. Impact of an advanced image-based monoenergetic reconstruction algorithm on coronary stent visualization using third generation dual-source dual-energy CT: a phantom study. Eur Radiol. 2016 Jun; 26(6):1871-8.
    View in: PubMed
    Score: 0.005
  134. A non-contrast self-navigated 3-dimensional MR technique for aortic root and vascular access route assessment in the context of transcatheter aortic valve replacement: proof of concept. Eur Radiol. 2016 Apr; 26(4):951-8.
    View in: PubMed
    Score: 0.005
  135. Absolute Versus Relative Myocardial Blood Flow by Dynamic CT Myocardial Perfusion Imaging in Patients With Anatomic Coronary Artery Disease. AJR Am J Roentgenol. 2015 Jul; 205(1):W67-72.
    View in: PubMed
    Score: 0.005
  136. Technical prerequisites and imaging protocols for dynamic and dual energy myocardial perfusion imaging. Eur J Radiol. 2015 Dec; 84(12):2401-10.
    View in: PubMed
    Score: 0.005
  137. Beyond stenosis detection: computed tomography approaches for determining the functional relevance of coronary artery disease. Radiol Clin North Am. 2015 Mar; 53(2):317-34.
    View in: PubMed
    Score: 0.005
  138. Chronic postinfarction pseudo-pseudoaneurysm diagnosed by cardiac MRI. J Magn Reson Imaging. 2007 Dec; 26(6):1656-8.
    View in: PubMed
    Score: 0.003
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.