Connection

Bashar Badran to Humans

This is a "connection" page, showing publications Bashar Badran has written about Humans.
Connection Strength

0.332
  1. Electrical stimulation of the trigeminal nerve improves olfaction in healthy individuals: A randomized, double-blind, sham-controlled trial. Brain Stimul. 2022 May-Jun; 15(3):761-768.
    View in: PubMed
    Score: 0.031
  2. A Comprehensive Review of Vagus Nerve Stimulation for Depression. Neuromodulation. 2022 04; 25(3):309-315.
    View in: PubMed
    Score: 0.029
  3. From adults to pediatrics: A review noninvasive brain stimulation (NIBS) to facilitate recovery from brain injury. Prog Brain Res. 2021; 264:287-322.
    View in: PubMed
    Score: 0.028
  4. Sonication of the anterior thalamus with MRI-Guided transcranial focused ultrasound (tFUS) alters pain thresholds in healthy adults: A double-blind, sham-controlled study. Brain Stimul. 2020 Nov - Dec; 13(6):1805-1812.
    View in: PubMed
    Score: 0.028
  5. Design and validation of a closed-loop, motor-activated auricular vagus nerve stimulation (MAAVNS) system for neurorehabilitation. Brain Stimul. 2020 May - Jun; 13(3):800-803.
    View in: PubMed
    Score: 0.026
  6. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations. J Vis Exp. 2019 01 07; (143).
    View in: PubMed
    Score: 0.024
  7. Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul. 2018 Jul - Aug; 11(4):947-948.
    View in: PubMed
    Score: 0.023
  8. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 2018 Jul - Aug; 11(4):699-708.
    View in: PubMed
    Score: 0.023
  9. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimul. 2018 May - Jun; 11(3):492-500.
    View in: PubMed
    Score: 0.023
  10. Transcutaneous auricular vagus nerve stimulation (taVNS) given for poor feeding in at-risk infants also improves their motor abilities. J Pediatr Rehabil Med. 2022; 15(3):447-457.
    View in: PubMed
    Score: 0.008
  11. Ruminative reflection is associated with anticorrelations between the orbitofrontal cortex and the default mode network in depression: implications for repetitive transcranial magnetic stimulation. Brain Imaging Behav. 2022 Jun; 16(3):1186-1195.
    View in: PubMed
    Score: 0.007
  12. High-resolution computational modeling of the current flow in the outer ear during transcutaneous auricular Vagus Nerve Stimulation (taVNS). Brain Stimul. 2021 Nov-Dec; 14(6):1419-1430.
    View in: PubMed
    Score: 0.007
  13. Two weeks of image-guided left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation improves smoking cessation: A double-blind, sham-controlled, randomized clinical trial. Brain Stimul. 2020 Sep - Oct; 13(5):1271-1279.
    View in: PubMed
    Score: 0.007
  14. Transcranial electrical stimulation motor threshold can estimate individualized tDCS dosage from reverse-calculation electric-field modeling. Brain Stimul. 2020 Jul - Aug; 13(4):961-969.
    View in: PubMed
    Score: 0.007
  15. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul. 2020 May - Jun; 13(3):717-750.
    View in: PubMed
    Score: 0.007
  16. Enhanced tES and tDCS computational models by meninges emulation. J Neural Eng. 2020 01 14; 17(1):016027.
    View in: PubMed
    Score: 0.007
  17. Transcranial electrical stimulation nomenclature. Brain Stimul. 2019 Nov - Dec; 12(6):1349-1366.
    View in: PubMed
    Score: 0.006
  18. Limited output transcranial electrical stimulation (LOTES-2017): Engineering principles, regulatory statutes, and industry standards for wellness, over-the-counter, or prescription devices with low risk. Brain Stimul. 2018 Jan - Feb; 11(1):134-157.
    View in: PubMed
    Score: 0.006
  19. Transcranial magnetic stimulation of the dorsal lateral prefrontal cortex inhibits medial orbitofrontal activity in smokers. Am J Addict. 2017 Dec; 26(8):788-794.
    View in: PubMed
    Score: 0.006
  20. Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex reduces resting-state insula activity and modulates functional connectivity of the orbitofrontal cortex in cigarette smokers. Drug Alcohol Depend. 2017 05 01; 174:98-105.
    View in: PubMed
    Score: 0.005
  21. The Efficacy of Daily Prefrontal Repetitive Transcranial Magnetic Stimulation (rTMS) for Burning Mouth Syndrome (BMS): A Randomized Controlled Single-blind Study. Brain Stimul. 2016 Mar-Apr; 9(2):234-42.
    View in: PubMed
    Score: 0.005
  22. Long-lasting analgesic effect of transcranial direct current stimulation in treatment of chronic endometriosis pain. J Obstet Gynaecol Res. 2015 Dec; 41(12):1998-2001.
    View in: PubMed
    Score: 0.005
  23. What goes up, can come down: Novel brain stimulation paradigms may attenuate craving and craving-related neural circuitry in substance dependent individuals. Brain Res. 2015 Dec 02; 1628(Pt A):199-209.
    View in: PubMed
    Score: 0.005
  24. Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered During Slow Wave Sleep Does Not Improve Declarative Memory More Than Sham: A Randomized Sham Controlled Crossover Study. Brain Stimul. 2015 May-Jun; 8(3):528-34.
    View in: PubMed
    Score: 0.005
  25. Integration of cortical brain stimulation and exposure and response prevention for obsessive-compulsive disorder (OCD). Brain Stimul. 2014 Sep-Oct; 7(5):764-5.
    View in: PubMed
    Score: 0.004
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.