Connection

David Jollow to Necrosis

This is a "connection" page, showing publications David Jollow has written about Necrosis.
Connection Strength

0.184
  1. Hepatic necrosis caused by furosemide. Nature. 1974 Oct 11; 251(5475):508-11.
    View in: PubMed
    Score: 0.027
  2. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974; 11(3):151-69.
    View in: PubMed
    Score: 0.026
  3. Relationship between sulfotransferase activity and susceptibility to acetaminophen-induced liver necrosis in the hamster. Drug Metab Dispos. 1987 Mar-Apr; 15(2):143-50.
    View in: PubMed
    Score: 0.016
  4. Mechanisms of fasting-induced potentiation of acetaminophen hepatotoxicity in the rat. Biochem Pharmacol. 1987 Feb 15; 36(4):427-33.
    View in: PubMed
    Score: 0.016
  5. Acetaminophen hepatotoxicity: studies on the mechanism of cysteamine protection. Toxicol Appl Pharmacol. 1986 Mar 30; 83(1):115-25.
    View in: PubMed
    Score: 0.015
  6. Anomalous susceptibility of the fasted hamster to acetaminophen hepatotoxicity. Biochem Pharmacol. 1986 Mar 01; 35(5):817-25.
    View in: PubMed
    Score: 0.015
  7. Effect of L-ascorbic acid on acetaminophen-induced hepatotoxicity and covalent binding in hamsters. Evidence that in vitro covalent binding differs from that in vivo. Drug Metab Dispos. 1984 May-Jun; 12(3):271-9.
    View in: PubMed
    Score: 0.013
  8. Glutathione thresholds in reactive metabolite toxicity. Arch Toxicol Suppl. 1980; 3:95-110.
    View in: PubMed
    Score: 0.010
  9. Metabolic activation of furosemide to a chemically reactive, hepatotoxic metabolite. J Pharmacol Exp Ther. 1976 Oct; 199(1):41-52.
    View in: PubMed
    Score: 0.008
  10. Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen. Life Sci. 1974 Jun 01; 14(11):2099-109.
    View in: PubMed
    Score: 0.007
  11. Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology. 1974; 12(4-5):251-71.
    View in: PubMed
    Score: 0.006
  12. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther. 1973 Oct; 187(1):195-202.
    View in: PubMed
    Score: 0.006
  13. Diminished serum Gc (vitamin D-binding protein) levels and increased Gc:G-actin complexes in a hamster model of fulminant hepatic necrosis. Hepatology. 1987 Sep-Oct; 7(5):825-30.
    View in: PubMed
    Score: 0.004
  14. Correlation between extent of liver damage in fulminant hepatic necrosis and complexing of circulating group-specific component (vitamin D-binding protein). J Lab Clin Med. 1987 Jul; 110(1):83-90.
    View in: PubMed
    Score: 0.004
  15. Acetaminophen-induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters. Pharmacology. 1974; 12(3):129-43.
    View in: PubMed
    Score: 0.002
  16. Acetaminophen-induced hepatic necrosis. 3. Cytochrome P-450-mediated covalent binding in vitro. J Pharmacol Exp Ther. 1973 Oct; 187(1):203-10.
    View in: PubMed
    Score: 0.002
  17. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther. 1973 Oct; 187(1):185-94.
    View in: PubMed
    Score: 0.002
  18. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther. 1973 Oct; 187(1):211-7.
    View in: PubMed
    Score: 0.002
  19. Role of detoxifying enzymes in bromobenzene-induced liver necrosis. J Pharmacol Exp Ther. 1973 Oct; 187(1):218-27.
    View in: PubMed
    Score: 0.002
  20. Drug metabolism as a cause of drug toxicity. Drug Metab Dispos. 1973 Jan-Feb; 1(1):418-23.
    View in: PubMed
    Score: 0.002
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.