Connection

Francis Spinale to Myocardial Infarction

This is a "connection" page, showing publications Francis Spinale has written about Myocardial Infarction.
Connection Strength

11.200
  1. Regional heterogeneity in determinants of atrial matrix remodeling and association with atrial fibrillation vulnerability postmyocardial infarction. Heart Rhythm. 2022 05; 19(5):847-855.
    View in: PubMed
    Score: 0.533
  2. Targeted Injection of a Truncated Form of Tissue Inhibitor of Metalloproteinase 3 Alters Post-Myocardial Infarction Remodeling. J Pharmacol Exp Ther. 2020 11; 375(2):296-307.
    View in: PubMed
    Score: 0.486
  3. Regional and temporal changes in left ventricular strain and stiffness in a porcine model of myocardial infarction. Am J Physiol Heart Circ Physiol. 2018 10 01; 315(4):H958-H967.
    View in: PubMed
    Score: 0.417
  4. Delivery of a matrix metalloproteinase-responsive hydrogel releasing TIMP-3 after myocardial infarction: effects on left ventricular remodeling. Am J Physiol Heart Circ Physiol. 2018 10 01; 315(4):H814-H825.
    View in: PubMed
    Score: 0.416
  5. Institution of localized high-frequency electrical stimulation targeting early myocardial infarction: Effects on left ventricle function and geometry. J Thorac Cardiovasc Surg. 2018 08; 156(2):568-575.
    View in: PubMed
    Score: 0.407
  6. Intracoronary delivery of recombinant TIMP-3 after myocardial infarction: effects on myocardial remodeling and function. Am J Physiol Heart Circ Physiol. 2017 Oct 01; 313(4):H690-H699.
    View in: PubMed
    Score: 0.390
  7. In vivo assessment of regional mechanics post-myocardial infarction: A focus on the road ahead. J Appl Physiol (1985). 2017 Oct 01; 123(4):728-745.
    View in: PubMed
    Score: 0.379
  8. Improving Delivery of a Biomaterial Payload in Myocardial Infarction. Circ Cardiovasc Interv. 2016 10; 9(10).
    View in: PubMed
    Score: 0.369
  9. Sonomicrometry-Based Analysis of Post-Myocardial Infarction Regional Mechanics. Ann Biomed Eng. 2016 12; 44(12):3539-3552.
    View in: PubMed
    Score: 0.363
  10. Targeted overexpression of tissue inhibitor of matrix metalloproteinase-4 modifies post-myocardial infarction remodeling in mice. Circ Res. 2014 Apr 25; 114(9):1435-45.
    View in: PubMed
    Score: 0.309
  11. Local hydrogel release of recombinant TIMP-3 attenuates adverse left ventricular remodeling after experimental myocardial infarction. Sci Transl Med. 2014 Feb 12; 6(223):223ra21.
    View in: PubMed
    Score: 0.307
  12. Localized targeting of biomaterials following myocardial infarction: a foundation to build on. Trends Cardiovasc Med. 2013 Nov; 23(8):301-11.
    View in: PubMed
    Score: 0.293
  13. Epilysin (matrix metalloproteinase-28) joins the matrix metalloproteinase team on the field of postmyocardial infarction remodeling. Circ Res. 2013 Feb 15; 112(4):579-82.
    View in: PubMed
    Score: 0.287
  14. Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circ Cardiovasc Genet. 2011 Dec; 4(6):614-9.
    View in: PubMed
    Score: 0.260
  15. Targeted regional injection of biocomposite microspheres alters post-myocardial infarction remodeling and matrix proteolytic pathways. Circulation. 2011 Sep 13; 124(11 Suppl):S35-45.
    View in: PubMed
    Score: 0.260
  16. Direct regulation of membrane type 1 matrix metalloproteinase following myocardial infarction causes changes in survival, cardiac function, and remodeling. Am J Physiol Heart Circ Physiol. 2011 Oct; 301(4):H1656-66.
    View in: PubMed
    Score: 0.255
  17. Heterogeneity in MT1-MMP activity with ischemia-reperfusion and previous myocardial infarction: relation to regional myocardial function. Am J Physiol Heart Circ Physiol. 2010 Dec; 299(6):H1947-58.
    View in: PubMed
    Score: 0.244
  18. Cardiac restricted overexpression of membrane type-1 matrix metalloproteinase causes adverse myocardial remodeling following myocardial infarction. J Biol Chem. 2010 Sep 24; 285(39):30316-27.
    View in: PubMed
    Score: 0.240
  19. Amplified bioactive signaling and proteolytic enzymes following ischemia reperfusion and aging: remodeling pathways that are not like a fine wine. Circulation. 2010 Jul 27; 122(4):322-4.
    View in: PubMed
    Score: 0.239
  20. Discordant activation of gene promoters for matrix metalloproteinases and tissue inhibitors of the metalloproteinases following myocardial infarction. J Surg Res. 2012 Jan; 172(1):59-67.
    View in: PubMed
    Score: 0.239
  21. Long-term localized high-frequency electric stimulation within the myocardial infarct: effects on matrix metalloproteinases and regional remodeling. Circulation. 2010 Jul 06; 122(1):20-32.
    View in: PubMed
    Score: 0.239
  22. Spatiotemporal induction of matrix metalloproteinase-9 transcription after discrete myocardial injury. FASEB J. 2010 Oct; 24(10):3819-28.
    View in: PubMed
    Score: 0.238
  23. Caspase inhibition modulates left ventricular remodeling following myocardial infarction through cellular and extracellular mechanisms. J Cardiovasc Pharmacol. 2010 Apr; 55(4):408-16.
    View in: PubMed
    Score: 0.235
  24. Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction. Circulation. 2009 Sep 15; 120(11 Suppl):S220-9.
    View in: PubMed
    Score: 0.226
  25. Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. Ann Thorac Surg. 2008 Oct; 86(4):1268-76.
    View in: PubMed
    Score: 0.212
  26. Specific temporal profile of matrix metalloproteinase release occurs in patients after myocardial infarction: relation to left ventricular remodeling. Circulation. 2006 Sep 05; 114(10):1020-7.
    View in: PubMed
    Score: 0.183
  27. Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation. 2006 Jun 27; 113(25):2919-28.
    View in: PubMed
    Score: 0.180
  28. Selective spatiotemporal induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 transcription after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006 Nov; 291(5):H2216-28.
    View in: PubMed
    Score: 0.180
  29. Selective targeting of matrix metalloproteinase inhibition in post-infarction myocardial remodeling. J Cardiovasc Pharmacol. 2006 Feb; 47(2):228-35.
    View in: PubMed
    Score: 0.176
  30. Cardiac support device modifies left ventricular geometry and myocardial structure after myocardial infarction. Circulation. 2005 Aug 30; 112(9):1274-83.
    View in: PubMed
    Score: 0.171
  31. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006 Jan; 290(1):H232-9.
    View in: PubMed
    Score: 0.171
  32. Accelerated LV remodeling after myocardial infarction in TIMP-1-deficient mice: effects of exogenous MMP inhibition. Am J Physiol Heart Circ Physiol. 2005 Jan; 288(1):H149-58.
    View in: PubMed
    Score: 0.163
  33. Pharmacologic inhibition of intracellular caspases after myocardial infarction attenuates left ventricular remodeling: a potentially novel pathway. J Thorac Cardiovasc Surg. 2003 Dec; 126(6):1892-9.
    View in: PubMed
    Score: 0.151
  34. Selective targeting and timing of matrix metalloproteinase inhibition in post-myocardial infarction remodeling. Circulation. 2003 Oct 07; 108(14):1753-9.
    View in: PubMed
    Score: 0.149
  35. Region- and type-specific induction of matrix metalloproteinases in post-myocardial infarction remodeling. Circulation. 2003 Jun 10; 107(22):2857-63.
    View in: PubMed
    Score: 0.146
  36. Matrix metalloproteinase inhibition modifies left ventricular remodeling after myocardial infarction in pigs. J Thorac Cardiovasc Surg. 2003 Mar; 125(3):602-10.
    View in: PubMed
    Score: 0.144
  37. Myocardial infarct expansion and matrix metalloproteinase inhibition. Circulation. 2003 Feb 04; 107(4):618-25.
    View in: PubMed
    Score: 0.143
  38. Extracellular matrix remodeling following myocardial injury. Ann Med. 2003; 35(5):316-26.
    View in: PubMed
    Score: 0.142
  39. Release of matrix metalloproteinases following alcohol septal ablation in hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol. 2002 Dec 18; 40(12):2165-73.
    View in: PubMed
    Score: 0.142
  40. Matrix Metalloproteinase-Targeted SPECT/CT Imaging for Evaluation of Therapeutic Hydrogels for the Early Modulation of Post-Infarct Myocardial Remodeling. J Cardiovasc Transl Res. 2023 Feb; 16(1):155-165.
    View in: PubMed
    Score: 0.137
  41. Application of Hybrid Matrix Metalloproteinase-Targeted and Dynamic 201Tl Single-Photon Emission Computed Tomography/Computed Tomography Imaging for Evaluation of Early Post-Myocardial Infarction Remodeling. Circ Cardiovasc Imaging. 2019 11; 12(11):e009055.
    View in: PubMed
    Score: 0.114
  42. Crossing Into the Next Frontier of Cardiac Extracellular Matrix Research. Circ Res. 2016 10 28; 119(10):1040-1045.
    View in: PubMed
    Score: 0.093
  43. Inhibition of class I histone deacetylase activity represses matrix metalloproteinase-2 and -9 expression and preserves LV function postmyocardial infarction. Am J Physiol Heart Circ Physiol. 2015 Jun 01; 308(11):H1391-401.
    View in: PubMed
    Score: 0.083
  44. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat Mater. 2014 Jun; 13(6):653-61.
    View in: PubMed
    Score: 0.077
  45. Reply to "letter to the editor: 'cyclosporin A in left ventricular remodeling after myocardial infarction'". Am J Physiol Heart Circ Physiol. 2014 Mar 01; 306(5):H778-9.
    View in: PubMed
    Score: 0.077
  46. Cyclosporin A in left ventricular remodeling after myocardial infarction. Am J Physiol Heart Circ Physiol. 2014 Jan 01; 306(1):H53-9.
    View in: PubMed
    Score: 0.075
  47. Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: relationship to myocardial dysfunction. Circ Cardiovasc Imaging. 2011 Jul; 4(4):381-91.
    View in: PubMed
    Score: 0.063
  48. Myocardial remodeling: cellular and extracellular events and targets. Annu Rev Physiol. 2011; 73:47-68.
    View in: PubMed
    Score: 0.062
  49. Calpain inhibition preserves myocardial structure and function following myocardial infarction. Am J Physiol Heart Circ Physiol. 2009 Nov; 297(5):H1744-51.
    View in: PubMed
    Score: 0.056
  50. Mitral regurgitation augments post-myocardial infarction remodeling failure of hypertrophic compensation. J Am Coll Cardiol. 2008 Jan 29; 51(4):476-86.
    View in: PubMed
    Score: 0.051
  51. Chronic matrix metalloproteinase inhibition following myocardial infarction in mice: differential effects on short and long-term survival. J Pharmacol Exp Ther. 2006 Sep; 318(3):966-73.
    View in: PubMed
    Score: 0.045
  52. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation. 2005 Nov 15; 112(20):3157-67.
    View in: PubMed
    Score: 0.043
  53. Infarct size reduction and attenuation of global left ventricular remodeling with the CorCap cardiac support device following acute myocardial infarction in sheep. Heart Fail Rev. 2005 Jun; 10(2):125-39.
    View in: PubMed
    Score: 0.042
  54. Plasma monitoring of the myocardial specific tissue inhibitor of metalloproteinase-4 after alcohol septal ablation in hypertrophic obstructive cardiomyopathy. J Card Fail. 2005 Mar; 11(2):124-30.
    View in: PubMed
    Score: 0.041
  55. Disruptions and detours in the myocardial matrix highway and heart failure. Curr Heart Fail Rep. 2005 Mar; 2(1):10-7.
    View in: PubMed
    Score: 0.041
  56. Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation. 2010 May 04; 121(17):1912-25.
    View in: PubMed
    Score: 0.015
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.