Connection

Carlo De Cecco to Reproducibility of Results

This is a "connection" page, showing publications Carlo De Cecco has written about Reproducibility of Results.
Connection Strength

2.657
  1. Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFRML): Impact of iterative and filtered back projection reconstruction techniques. J Cardiovasc Comput Tomogr. 2019 Nov - Dec; 13(6):331-335.
    View in: PubMed
    Score: 0.105
  2. A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions. Eur Radiol. 2018 Aug; 28(8):3393-3404.
    View in: PubMed
    Score: 0.100
  3. Beam-hardening in 70-kV Coronary CT angiography: Artifact reduction using an advanced post-processing algorithm. Eur J Radiol. 2018 Apr; 101:111-117.
    View in: PubMed
    Score: 0.100
  4. Optimization of window settings for standard and advanced virtual monoenergetic imaging in abdominal dual-energy CT angiography. Abdom Radiol (NY). 2017 03; 42(3):772-780.
    View in: PubMed
    Score: 0.094
  5. Prognostic Value of Stress Dynamic Myocardial Perfusion CT in a Multicenter Population With Known or Suspected Coronary Artery Disease. AJR Am J Roentgenol. 2017 Apr; 208(4):761-769.
    View in: PubMed
    Score: 0.093
  6. CT myocardial perfusion: state of the science. Minerva Cardioangiol. 2017 Jun; 65(3):252-264.
    View in: PubMed
    Score: 0.092
  7. Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur Radiol. 2017 Feb; 27(2):642-650.
    View in: PubMed
    Score: 0.088
  8. Virtual unenhanced imaging of the liver with third-generation dual-source dual-energy CT and advanced modeled iterative reconstruction. Eur J Radiol. 2016 Jul; 85(7):1257-64.
    View in: PubMed
    Score: 0.088
  9. Semiautomated Global Quantification of Left Ventricular Myocardial Perfusion at Stress Dynamic CT:: Diagnostic Accuracy for Detection of Territorial Myocardial Perfusion Deficits Compared to Visual Assessment. Acad Radiol. 2016 Apr; 23(4):429-37.
    View in: PubMed
    Score: 0.087
  10. Optimization of window settings for virtual monoenergetic imaging in dual-energy CT of the liver: A multi-reader evaluation of standard monoenergetic and advanced imaged-based monoenergetic datasets. Eur J Radiol. 2016 Apr; 85(4):695-9.
    View in: PubMed
    Score: 0.087
  11. Approaches to ultra-low radiation dose coronary artery calcium scoring based on 3rd generation dual-source CT: A phantom study. Eur J Radiol. 2016 Jan; 85(1):39-47.
    View in: PubMed
    Score: 0.085
  12. Impact of an advanced image-based monoenergetic reconstruction algorithm on coronary stent visualization using third generation dual-source dual-energy CT: a phantom study. Eur Radiol. 2016 Jun; 26(6):1871-8.
    View in: PubMed
    Score: 0.085
  13. Performance of Automated Software in the Assessment of Segmental Left Ventricular Function in Cardiac CT: Comparison with Cardiac Magnetic Resonance. Eur Radiol. 2015 Dec; 25(12):3560-6.
    View in: PubMed
    Score: 0.082
  14. Image quality and radiation dose of low tube voltage 3rd generation dual-source coronary CT angiography in obese patients: a phantom study. Eur Radiol. 2014 Jul; 24(7):1643-50.
    View in: PubMed
    Score: 0.077
  15. Physician preference between low-dose computed tomography with a sinogram-affirmed iterative reconstruction algorithm and routine-dose computed tomography with filtered back projection in abdominopelvic imaging. J Comput Assist Tomogr. 2013 Nov-Dec; 37(6):932-6.
    View in: PubMed
    Score: 0.074
  16. Second-generation dual-energy computed tomography of the abdomen: radiation dose comparison with 64- and 128-row single-energy acquisition. J Comput Assist Tomogr. 2013 Jul-Aug; 37(4):543-6.
    View in: PubMed
    Score: 0.073
  17. Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images. Eur Radiol. 2010 Dec; 20(12):2870-5.
    View in: PubMed
    Score: 0.059
  18. Anatomic variations of the hepatic arteries in 250 patients studied with 64-row CT angiography. Eur Radiol. 2009 Nov; 19(11):2765-70.
    View in: PubMed
    Score: 0.055
  19. Dual-energy CT performance in acute pulmonary embolism: a meta-analysis. Eur Radiol. 2021 Aug; 31(8):6248-6258.
    View in: PubMed
    Score: 0.031
  20. Ischemia and outcome prediction by cardiac CT based machine learning. Int J Cardiovasc Imaging. 2020 Dec; 36(12):2429-2439.
    View in: PubMed
    Score: 0.029
  21. Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography. J Thorac Imaging. 2020 May; 35 Suppl 1:S49-S57.
    View in: PubMed
    Score: 0.029
  22. Rationale and design of the quantification of myocardial blood flow using dynamic PET/CTA-fused imagery (DEMYSTIFY) to determine physiological significance of specific coronary lesions. J Nucl Cardiol. 2020 06; 27(3):1030-1039.
    View in: PubMed
    Score: 0.029
  23. Novel imaging biomarkers: epicardial adipose tissue evaluation. Br J Radiol. 2020 Sep 01; 93(1113):20190770.
    View in: PubMed
    Score: 0.028
  24. Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR: Results From MACHINE Registry. JACC Cardiovasc Imaging. 2020 03; 13(3):760-770.
    View in: PubMed
    Score: 0.028
  25. Advanced atherosclerosis imaging by CT: Radiomics, machine learning and deep learning. J Cardiovasc Comput Tomogr. 2019 Sep - Oct; 13(5):274-280.
    View in: PubMed
    Score: 0.027
  26. Does the clinical information play a role in the magnetic resonance diagnostic confidence analysis of ovarian and deep endometriosis? Br J Radiol. 2019 Apr; 92(1096):20180548.
    View in: PubMed
    Score: 0.027
  27. Modified calcium subtraction in dual-energy CT angiography of the lower extremity runoff: impact on diagnostic accuracy for stenosis detection. Eur Radiol. 2019 Sep; 29(9):4783-4793.
    View in: PubMed
    Score: 0.027
  28. Diagnostic Accuracy of Noncontrast Self-navigated Free-breathing MR Angiography versus CT Angiography: A Prospective Study in Pediatric Patients with Suspected Anomalous Coronary Arteries. Acad Radiol. 2019 10; 26(10):1309-1317.
    View in: PubMed
    Score: 0.027
  29. Intermodel disagreement of myocardial blood flow estimation from dynamic CT perfusion imaging. Eur J Radiol. 2019 Jan; 110:175-180.
    View in: PubMed
    Score: 0.026
  30. Characteristics and associated risk factors of diverticular disease assessed by magnetic resonance imaging in subjects from a Western general population. Eur Radiol. 2019 Mar; 29(3):1094-1103.
    View in: PubMed
    Score: 0.026
  31. Machine learning in cardiac CT: Basic concepts and contemporary data. J Cardiovasc Comput Tomogr. 2018 May - Jun; 12(3):192-201.
    View in: PubMed
    Score: 0.025
  32. Coronary CT Angiography-derived Fractional Flow Reserve: Machine Learning Algorithm versus Computational Fluid Dynamics Modeling. Radiology. 2018 Jul; 288(1):64-72.
    View in: PubMed
    Score: 0.025
  33. Cardiac Magnetic Resonance T1-Mapping of the Myocardium: Technical Background and Clinical Relevance. J Thorac Imaging. 2018 Mar; 33(2):71-80.
    View in: PubMed
    Score: 0.025
  34. High-pitch low-voltage CT coronary artery calcium scoring with tin filtration: accuracy and radiation dose reduction. Eur Radiol. 2018 Jul; 28(7):3097-3104.
    View in: PubMed
    Score: 0.025
  35. Heavily Calcified Coronary Arteries: Advanced Calcium Subtraction Improves Luminal Visualization and Diagnostic Confidence in Dual-Energy Coronary Computed Tomography Angiography. Invest Radiol. 2018 02; 53(2):103-109.
    View in: PubMed
    Score: 0.025
  36. Quantitative inversion time prescription for myocardial late gadolinium enhancement using T1-mapping-based synthetic inversion recovery imaging: reducing subjectivity in the estimation of inversion time. Int J Cardiovasc Imaging. 2018 Jun; 34(6):921-929.
    View in: PubMed
    Score: 0.025
  37. Virtual Monoenergetic Imaging and Iodine Perfusion Maps Improve Diagnostic Accuracy of Dual-Energy Computed Tomography Pulmonary Angiography With Suboptimal Contrast Attenuation. Invest Radiol. 2017 11; 52(11):659-665.
    View in: PubMed
    Score: 0.024
  38. Coronary CT Angiography-derived Fractional Flow Reserve. Radiology. 2017 10; 285(1):17-33.
    View in: PubMed
    Score: 0.024
  39. Coronary Computed Tomographic Angiography-Derived Fractional Flow Reserve for Therapeutic Decision Making. Am J Cardiol. 2017 Dec 15; 120(12):2121-2127.
    View in: PubMed
    Score: 0.024
  40. Small Intracranial Aneurysms: Diagnostic Accuracy of CT Angiography. Radiology. 2017 Dec; 285(3):941-952.
    View in: PubMed
    Score: 0.024
  41. CT angiography to evaluate coronary artery disease and revascularization requirement before trans-catheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2017 Sep - Oct; 11(5):338-346.
    View in: PubMed
    Score: 0.024
  42. CT coronary calcium scoring with tin filtration using iterative beam-hardening calcium correction reconstruction. Eur J Radiol. 2017 Jun; 91:29-34.
    View in: PubMed
    Score: 0.023
  43. Accuracy of Noncontrast Quiescent-Interval Single-Shot Lower Extremity MR Angiography Versus CT?Angiography for Diagnosis of Peripheral Artery Disease: Comparison With Digital Subtraction Angiography. JACC Cardiovasc Imaging. 2017 10; 10(10 Pt A):1116-1124.
    View in: PubMed
    Score: 0.023
  44. State-of-the-Art Pulmonary CT Angiography for Acute Pulmonary Embolism. AJR Am J Roentgenol. 2017 Mar; 208(3):495-504.
    View in: PubMed
    Score: 0.023
  45. Intra-individual comparison of CAIPIRINHA VIBE technique with conventional VIBE sequences in contrast-enhanced MRI of focal liver lesions. Eur J Radiol. 2017 Jan; 86:20-25.
    View in: PubMed
    Score: 0.023
  46. Can dual-energy computed tomography improve visualization of hypoenhancing liver lesions in portal venous phase? Assessment of advanced image-based virtual monoenergetic images. Clin Imaging. 2017 Jan - Feb; 41:118-124.
    View in: PubMed
    Score: 0.023
  47. T(Rho) and magnetization transfer and INvErsion recovery (TRAMINER)-prepared imaging: A novel contrast-enhanced flow-independent dark-blood technique for the evaluation of myocardial late gadolinium enhancement in patients with myocardial infarction. J Magn Reson Imaging. 2017 05; 45(5):1429-1437.
    View in: PubMed
    Score: 0.023
  48. Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis. J Cardiovasc Comput Tomogr. 2016 May-Jun; 10(3):199-206.
    View in: PubMed
    Score: 0.022
  49. A noise-optimized virtual monochromatic reconstruction algorithm improves stent visualization and diagnostic accuracy for detection of in-stent re-stenosis in lower extremity run-off CT angiography. Eur Radiol. 2016 Dec; 26(12):4380-4389.
    View in: PubMed
    Score: 0.022
  50. Dual-Energy Computed Tomography Angiography of the Lower Extremity Runoff: Impact of Noise-Optimized Virtual Monochromatic Imaging on Image Quality and Diagnostic Accuracy. Invest Radiol. 2016 Feb; 51(2):139-46.
    View in: PubMed
    Score: 0.022
  51. Quantitative evaluation of beam-hardening artefact correction in dual-energy CT myocardial perfusion imaging. Eur Radiol. 2016 Sep; 26(9):3215-22.
    View in: PubMed
    Score: 0.021
  52. Application of an Advanced Image-Based Virtual Monoenergetic Reconstruction of Dual Source Dual-Energy CT Data at Low keV Increases Image Quality for Routine Pancreas Imaging. J Comput Assist Tomogr. 2015 Sep-Oct; 39(5):716-20.
    View in: PubMed
    Score: 0.021
  53. Clinical feasibility of a myocardial signal intensity threshold-based semi-automated cardiac magnetic resonance segmentation method. Eur Radiol. 2016 May; 26(5):1503-11.
    View in: PubMed
    Score: 0.021
  54. Diagnostic value of quantitative stenosis predictors with coronary CT angiography compared to invasive fractional flow reserve. Eur J Radiol. 2015 Aug; 84(8):1509-1515.
    View in: PubMed
    Score: 0.021
  55. Cardiac CT for myocardial ischaemia detection and characterization--comparative analysis. Br J Radiol. 2014 Nov; 87(1043):20140159.
    View in: PubMed
    Score: 0.020
  56. Reduced radiation dose and improved image quality at cardiovascular CT angiography by automated attenuation-based tube voltage selection: intra-individual comparison. Eur Radiol. 2014 Nov; 24(11):2677-84.
    View in: PubMed
    Score: 0.020
  57. Residents' performance in the interpretation of on-call "triple-rule-out" CT studies in patients with acute chest pain. Acad Radiol. 2014 Jul; 21(7):938-44.
    View in: PubMed
    Score: 0.019
  58. Feasibility of prospectively ECG-triggered high-pitch coronary CT angiography with 30 mL iodinated contrast agent at 70 kVp: initial experience. Eur Radiol. 2014 Jul; 24(7):1537-46.
    View in: PubMed
    Score: 0.019
  59. Endometriosis: the role of magnetic resonance imaging. Acta Radiol. 2015 Mar; 56(3):355-67.
    View in: PubMed
    Score: 0.019
  60. Reproducibility of noncalcified coronary artery plaque burden quantification from coronary CT angiography across different image analysis platforms. AJR Am J Roentgenol. 2014 Jan; 202(1):W43-9.
    View in: PubMed
    Score: 0.019
  61. Role of preoperative imaging with multidetector computed tomography in the management of patients with gastroesophageal reflux disease symptoms after laparoscopic sleeve gastrectomy. Obes Surg. 2013 Dec; 23(12):1981-6.
    View in: PubMed
    Score: 0.019
  62. Automated quantification of epicardial adipose tissue using CT angiography: evaluation of a prototype software. Eur Radiol. 2014 Feb; 24(2):519-26.
    View in: PubMed
    Score: 0.019
  63. High concentration (400 mgI/mL) versus low concentration (320 mgI/mL) iodinated contrast media in multi detector computed tomography of the liver: a randomized, single centre, non-inferiority study. Eur J Radiol. 2012 Nov; 81(11):3096-101.
    View in: PubMed
    Score: 0.017
  64. Assessment of left ventricular parameters in orthotopic heart transplant recipients using dual-source CT and contrast-enhanced echocardiography: comparison with MRI. Eur J Radiol. 2012 Nov; 81(11):3282-8.
    View in: PubMed
    Score: 0.017
  65. Accuracy of different reconstruction intervals to quantify left ventricular function and mass in cardiac computed tomography examinations. Radiologia. 2012 Sep-Oct; 54(5):432-41.
    View in: PubMed
    Score: 0.016
  66. Dual-source CT in heart transplant recipients: quantification of global left ventricular function and mass. J Thorac Imaging. 2009 May; 24(2):103-9.
    View in: PubMed
    Score: 0.014
  67. Quantification of left ventricular function and mass in heart transplant recipients using dual-source CT and MRI: initial clinical experience. Eur Radiol. 2008 Sep; 18(9):1784-90.
    View in: PubMed
    Score: 0.013
  68. Dual-source CT coronary imaging in heart transplant recipients: image quality and optimal reconstruction interval. Eur Radiol. 2008 Sep; 18(9):1791-9.
    View in: PubMed
    Score: 0.013
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.