Connection

John Woodward to Excitatory Postsynaptic Potentials

This is a "connection" page, showing publications John Woodward has written about Excitatory Postsynaptic Potentials.
  1. Loss of Ethanol Inhibition of N-Methyl-D-Aspartate Receptor-Mediated Currents and Plasticity of Cerebellar Synapses in Mice Expressing the GluN1(F639A) Subunit. Alcohol Clin Exp Res. 2018 Apr; 42(4):698-705.
    View in: PubMed
    Score: 0.602
  2. Chronic Intermittent Ethanol Exposure Enhances the Excitability and Synaptic Plasticity of Lateral Orbitofrontal Cortex Neurons and Induces a Tolerance to the Acute Inhibitory Actions of Ethanol. Neuropsychopharmacology. 2016 Mar; 41(4):1112-27.
    View in: PubMed
    Score: 0.127
  3. Ethanol reduces neuronal excitability of lateral orbitofrontal cortex neurons via a glycine receptor dependent mechanism. Neuropsychopharmacology. 2013 Jun; 38(7):1176-88.
    View in: PubMed
    Score: 0.106
  4. The abused inhalant toluene differentially modulates excitatory and inhibitory synaptic transmission in deep-layer neurons of the medial prefrontal cortex. Neuropsychopharmacology. 2011 Jun; 36(7):1531-42.
    View in: PubMed
    Score: 0.093
  5. Ethanol selectively attenuates NMDAR-mediated synaptic transmission in the prefrontal cortex. Alcohol Clin Exp Res. 2008 Apr; 32(4):690-8.
    View in: PubMed
    Score: 0.076
  6. Interaction of chronic intermittent ethanol and repeated stress on structural and functional plasticity in the mouse medial prefrontal cortex. Neuropharmacology. 2021 01; 182:108396.
    View in: PubMed
    Score: 0.046
  7. Opposing actions of CRF-R1 and CB1 receptors on VTA-GABAergic plasticity following chronic exposure to ethanol. Neuropsychopharmacology. 2018 09; 43(10):2064-2074.
    View in: PubMed
    Score: 0.039
  8. Small conductance calcium-activated potassium type 2 channels regulate alcohol-associated plasticity of glutamatergic synapses. Biol Psychiatry. 2011 Apr 01; 69(7):625-32.
    View in: PubMed
    Score: 0.023
  9. Brain-derived neurotrophic factor activation of extracellular signal-regulated kinase is autonomous from the dominant extrasynaptic NMDA receptor extracellular signal-regulated kinase shutoff pathway. Neuroscience. 2008 Jan 24; 151(2):419-27.
    View in: PubMed
    Score: 0.018
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.